首页> 外文OA文献 >Fast multi-channel Gibbs-sampling for low-overhead distributed resource allocation in OFDMA cellular networks
【2h】

Fast multi-channel Gibbs-sampling for low-overhead distributed resource allocation in OFDMA cellular networks

机译:基于MMA蜂窝网络中的低开销分布式资源分配的快速多通道GIBBS抽样

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A major challenge in OFDMA cellular networks is to efficiently allocate scarce channel resources in order to optimize global system performance. In particular, the allocation problem across cells/base-stations is known to incur extremely high computational and communication complexity. Recently, Gibbs sampling has been used to solve the downlink inter-cell allocation problem with distributed algorithms that incur low computational complexity in each iteration. In a typical Gibbs sampling algorithm, in order to determine whether to transit to a new state, one needs to know in advance the performance value after the transition, even before such transition takes place. For OFDMA networks with many channels, such computation of future performance values leads to a challenging tradeoff between convergence speed and overhead: the algorithm either updates a very small number of channels at an iteration, which leads to slow convergence, or incurs high computation and communication overhead. In this paper, we propose a new multi-channel Gibbs sampling algorithm that resolves this tradeoff. The key idea is to utilize perturbation analysis so that each base-station can accurately predict the future performance values. As a result, the proposed algorithm can quickly update many channels in every iteration without incurring excessive computation and communication overhead. Simulation results show that our algorithm converges quickly and achieves system utility that is close to the existing Gibbs sampling algorithm.
机译:OFDMA蜂窝网络中的主要挑战是有效地分配稀缺信道资源,以优化全球系统性能。特别地,已知细胞/基站跨越的分配问题,以产生极高的计算和通信复杂性。最近,GIBBS采样已被用于解决在每次迭代中产生低计算复杂度的分布式算法的下行链路间群体分配问题。在典型的GIBBS采样算法中,为了确定是否过境到新状态,需要在转换后提前知道过渡后的性能值,甚至在这种转变之前发生。对于具有许多通道的OFDMA网络,这种计算的计算能够在收敛速度和开销之间产生具有挑战性的折衷:算法在迭代时更新非常少量的通道,这导致慢趋同,或引发高计算和通信高架。在本文中,我们提出了一种新的多通道GIBBS采样算法,可以解决这个权衡。关键思想是利用扰动分析,使得每个基站可以准确地预测未来的性能值。结果,所提出的算法可以在每次迭代中快速更新许多通道,而不会产生过度计算和通信开销。仿真结果表明,我们的算法会收敛并达到接近现有GIBBS采样算法的系统实用程序。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号