首页> 外文OA文献 >An ARMA Type Fuzzy Time Series Forecasting Method Based on Particle Swarm Optimization
【2h】

An ARMA Type Fuzzy Time Series Forecasting Method Based on Particle Swarm Optimization

机译:基于粒子群优化的ARMA型模糊时间序列预测方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In the literature, fuzzy time series forecasting models generally include fuzzy lagged variables. Thus, these fuzzy time series models have only autoregressive structure. Using such fuzzy time series models can cause modeling error and bad forecasting performance like in conventional time series analysis. To overcome these problems, a new first-order fuzzy time series which forecasting approach including both autoregressive and moving average structures is proposed in this study. Also, the proposed model is a time invariant model and based on particle swarm optimization heuristic. To show the applicability of the proposed approach, some methods were applied to five time series which were also forecasted using the proposed method. Then, the obtained results were compared to those obtained from other methods available in the literature. It was observed that the most accurate forecast was obtained when the proposed approach was employed.
机译:在文献中,模糊时间序列预测模型通常包括模糊滞后变量。因此,这些模糊时间序列模型仅具有自回归结构。使用这种模糊时间序列模型可能会导致在传统时间序列分析中造成建模误差和错误预测性能。为了克服这些问题,在这项研究中提出了一种新的一阶模糊时间序列,其预测包括自回归和移动平均结构的预测方法。此外,所提出的模型是一种时间不变模型,基于粒子群优化启发式。为了展示所提出的方法的适用性,将一些方法应用于五次序列,使用该方法也预测。然后,将得到的结果与从文献中可用的其他方法获得的结果进行比较。观察到,当采用拟议方法时获得最准确的预测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号