首页> 外文OA文献 >Millisecond kinetics on a microfluidic chip using nanoliters of reagents
【2h】

Millisecond kinetics on a microfluidic chip using nanoliters of reagents

机译:使用纳升试剂的微流控芯片上的毫秒动力学

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper describes a microfluidic chip for performing kinetic measurements with better than millisecond resolution. Rapid kinetic measurements in microfluidic systems are complicated by two problems: mixing is slow and dispersion is large. These problems also complicate biochemical assays performed in microfluidic chips. We have recently shown (Song, H.; Tice, J. D.; Ismagilov, R. F. Angew. Chem., Int. Ed. 2003, 42, 768-772) how multiphase fluid flow in microchannels can be used to address both problems by transporting the reagents inside aqueous droplets (plugs) surrounded by an immiscible fluid. Here, this droplet-based microfluidic system was used to extract kinetic parameters of an enzymatic reaction. Rapid single-turnover kinetics of ribonuclease A (RNase A) was measured with better than millisecond resolution using sub-microliter volumes of solutions. To obtain the single-turnover rate constant (k = 1100 +/- 250 s(-1)), four new features for this microfluidics platform were demonstrated: (i) rapid on-chip dilution, (ii) multiple time range access, (iii) biocompatibility with RNase A, and (iv) explicit treatment of mixing for improving time resolution of the system. These features are discussed using kinetics of RNase A. From fluorescent images integrated for 2-4 s, each kinetic profile can be obtained using less than 150 nL of solutions of reagents because this system relies on chaotic advection inside moving droplets rather than on turbulence to achieve rapid mixing. Fabrication of these devices in PDMS is straightforward and no specialized equipment, except for a standard microscope with a CCD camera, is needed to run the experiments. This microfluidic platform could serve as an inexpensive and economical complement to stopped-flow methods for a broad range of time-resolved experiments and assays in chemistry and biochemistry.
机译:本文介绍了一种微流控芯片,用于执行动力学测量,分辨率优于毫秒。微流体系统中的快速动力学测量由于两个问题而变得复杂:混合缓慢且分散大。这些问题也使在微流控芯片中进行的生化分析复杂化。我们最近显示了(Song,H .; Tice,JD; Ismagilov,RF Angew。Chem。,Int。Ed。2003,42,768-772)如何通过传输微通道中的多相流体来解决这两个问题。被不混溶流体包围的水滴(塞子)内部的试剂。在这里,该基于液滴的微流体系统用于提取酶促反应的动力学参数。使用亚微升体积的溶液,以高于毫秒的分辨率测量了核糖核酸酶A(RNase A)的快速单周动力学。为了获得单周转率常数(k = 1100 +/- 250 s(-1)),该微流控平台具有四个新功能:(i)快速片上稀释,(ii)多时间范围访问, (iii)与RNase A的生物相容性,以及(iv)显式处理混合液以提高系统的时间分辨率。使用RNase A的动力学讨论了这些特征。从积分2-4 s的荧光图像中,可以使用不到150 nL的试剂溶液获得每个动力学图谱,因为该系统依赖于运动液滴内部的对流,而不是湍流。实现快速混合。在PDMS中这些设备的制造非常简单,并且不需要专用设备(带有CCD相机的标准显微镜)即可进行实验。该微流体平台可作为停流方法的廉价且经济的补充,适用于化学和生物化学领域的各种时间分辨的实验和测定。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号