首页> 外文OA文献 >A method for the estimation of the significance of cross-correlations in unevenly sampled red-noise time series
【2h】

A method for the estimation of the significance of cross-correlations in unevenly sampled red-noise time series

机译:在不均匀采样的红色噪声时间序列中互相关的重要性的估计方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We present a practical implementation of a Monte Carlo method to estimate the significance of cross-correlations in unevenly sampled time series of data, whose statistical properties are modelled with a simple power-law power spectral density. This implementation builds on published methods; we introduce a number of improvements in the normalization of the cross-correlation function estimate and a bootstrap method for estimating the significance of the cross-correlations. A closely related matter is the estimation of a model for the light curves, which is critical for the significance estimates. We present a graphical and quantitative demonstration that uses simulations to show how common it is to get high cross-correlations for unrelated light curves with steep power spectral densities. This demonstration highlights the dangers of interpreting them as signs of a physical connection. We show that by using interpolation and the Hanning sampling window function we are able to reduce the effects of red-noise leakage and to recover steep simple power-law power spectral densities. We also introduce the use of a Neyman construction for the estimation of the errors in the power-law index of the power spectral density. This method provides a consistent way to estimate the significance of cross-correlations in unevenly sampled time series of data.
机译:我们提出了一个蒙特卡罗方法的实际实现,以估计不均匀采样的时间序列数据中互相关的重要性,该数据的统计属性是用简单的幂律功率谱密度建模的。此实现建立在已发布的方法之上;我们介绍了互相关函数估计的归一化方面的许多改进以及用于估计互相关的重要性的自举方法。一个密切相关的问题是光曲线模型的估计,这对于重要性估计至关重要。我们提供了一个图形化和定量的演示,该演示使用模拟来显示具有陡峭的功率谱密度的无关光曲线获得高互相关的情况。该演示突出显示了将它们解释为物理连接迹象的危险。我们表明,通过使用插值和Hanning采样窗口函数,我们能够减少红噪声泄漏的影响并恢复陡峭的简单幂律功率谱密度。我们还介绍了使用Neyman结构估算功率谱密度的幂律指数中的误差。该方法提供了一种一致的方式来估计在采样时间序列不均匀的数据中互相关的重要性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号