首页> 外文OA文献 >Forecasting day-ahead electricity load using a multiple equation time series approach
【2h】

Forecasting day-ahead electricity load using a multiple equation time series approach

机译:使用多方程时间序列方法预测前方电力负荷

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The quality of short-term electricity load forecasting is crucial to the operation and trading activities of market participants in an electricity market. In this paper, it is shown that a multiple equation time-series model, which is estimated by repeated application of ordinary least squares, has the potential to match or even outperform more complex nonlinear and nonparametric forecasting models. The key ingredient of the success of this simple model is the effective use of lagged information by allowing for interaction between seasonal patterns and intra-day dependencies. Although the model is built using data for the Queensland region of Australia, the method is completely generic and applicable to any load forecasting problem. The model’s forecasting ability is assessed by means of the mean absolute percentage error (MAPE). For day-ahead forecast, the MAPE returned by the model over a period of 11 years is an impressive 1.36%. The forecast accuracy of the model is compared with a number of benchmarks including three popular alternatives and one industrial standard reported by the Australia Energy Market Operator (AEMO). The performance of the model developed in this paper is superior to all benchmarks and outperforms the AEMO forecasts by about a third in terms of the MAPE criterion.
机译:短期电力负荷预测的质量是在电力市场的市场参与者的操作和交易活动的关键。在本文中,示出的是一个多方程时间序列模型,它是由普通最小二乘重复应用估计,必须匹配或甚至优于更复杂的非线性和非参数预测模型的潜力。这个简单的模型取得成功的关键因素是允许的季节性模式和日内依赖之间的互动的有效利用滞后的信息。虽然该模型是利用数据对澳大利亚的昆士兰地区建成,该方法是完全通用的,适用于任何负荷预测问题。该模型的预测能力是由平均绝对误差百分比(MAPE)来评价。对于日前预测,梅普历时11年返回该模型是一个了不起的1.36%。该模型的预测准确度与数量基准包括三种流行的选择,一个行业标准由澳大利亚能源市场运营商(AEMO)报道的比较。本文建立的模型的性能优于所有的基准和优于AEMO预测有关梅普标准方面的三分之一。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号