首页> 外文OA文献 >Oversampling PCM techniques and optimum noise shapers for quantizing a class of nonbandlimited signals
【2h】

Oversampling PCM techniques and optimum noise shapers for quantizing a class of nonbandlimited signals

机译:过采样PCM技术和最佳噪声整形器,用于量化一类非带宽信号

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We consider the efficient quantization of a class of nonbandlimited signals, namely, the class of discrete-time signals that can be recovered from their decimated version. The signals are modeled as the output of a single FIR interpolation filter (single band model) or, more generally, as the sum of the outputs of L FIR interpolation filters (multiband model). These nonbandlimited signals are oversampled, and it is therefore reasonable to expect that we can reap the same benefits of well-known efficient A/D techniques that apply only to bandlimited signals. We first show that we can obtain a great reduction in the quantization noise variance due to the oversampled nature of the signals. We can achieve a substantial decrease in bit rate by appropriately decimating the signals and then quantizing them. To further increase the effective quantizer resolution, noise shaping is introduced by optimizing prefilters and postfilters around the quantizer. We start with a scalar time-invariant quantizer and study two important cases of linear time invariant (LTI) filters, namely, the case where the postfilter is the inverse of the prefilter and the more general case where the postfilter is independent from the prefilter. Closed form expressions for the optimum filters and average minimum mean square error are derived in each case for both the single band and multiband models. The class of noise shaping filters and quantizers is then enlarged to include linear periodically time varying (LPTV)M filters and periodically time-varying quantizers of period M. We study two special cases in great detail.
机译:我们考虑一类非带宽信号的有效量化,即可以从其抽取后的版本中恢复的一类离散时间信号。信号被建模为单个FIR插值滤波器的输出(单频带模型),或更一般地,被建模为L个FIR插值滤波器的输出之和(多频带模型)。这些非带宽限制的信号被过采样,因此可以合理地期望我们能够获得仅适用于带宽限制信号的众所周知的高效A / D技术的相同好处。我们首先表明,由于信号的过采样特性,我们可以大大降低量化噪声方差。通过适当地抽取信号然后对其进行量化,我们可以大大降低比特率。为了进一步提高有效的量化器分辨率,通过优化量化器周围的前置滤波器和后置滤波器来引入噪声整形。我们从标量时不变量化器开始,研究线性时不变(LTI)滤波器的两个重要情况,即后置滤波器是预滤波器的逆,并且更一般的情况是后置滤波器与预滤波器无关。对于单频带和多频带模型,在每种情况下均得出最佳滤波器的闭式表达式和平均最小均方误差。然后扩大了噪声整形滤波器和量化器的类别,以包括线性周期性时变(LPTV)M滤波器和周期M的周期性时变量化器。我们将详细研究两种特殊情况。

著录项

  • 作者单位
  • 年度 1999
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号