首页> 外文OA文献 >Modified Bat Algorithm Based on Lévy Flight and Opposition Based Learning
【2h】

Modified Bat Algorithm Based on Lévy Flight and Opposition Based Learning

机译:基于Lévy飞行的修改BAT算法及基于反对的学习

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Bat Algorithm (BA) is a swarm intelligence algorithm which has been intensively applied to solve academic and real life optimization problems. However, due to the lack of good balance between exploration and exploitation, BA sometimes fails at finding global optimum and is easily trapped into local optima. In order to overcome the premature problem and improve the local searching ability of Bat Algorithm for optimization problems, we propose an improved BA called OBMLBA. In the proposed algorithm, a modified search equation with more useful information from the search experiences is introduced to generate a candidate solution, and Lévy Flight random walk is incorporated with BA in order to avoid being trapped into local optima. Furthermore, the concept of opposition based learning (OBL) is embedded to BA to enhance the diversity and convergence capability. To evaluate the performance of the proposed approach, 16 benchmark functions have been employed. The results obtained by the experiments demonstrate the effectiveness and efficiency of OBMLBA for global optimization problems. Comparisons with some other BA variants and other state-of-the-art algorithms have shown the proposed approach significantly improves the performance of BA. Performances of the proposed algorithm on large scale optimization problems and real world optimization problems are not discussed in the paper, and it will be studied in the future work.
机译:BAT算法(BA)是一种群体智能算法,它被密集地应用于解决学术和现实生活优化问题。但是,由于勘探和剥削之间缺乏良好的平衡,BA有时在寻找全球最佳状态下失败,并且很容易被困到本地最佳最佳状态。为了克服早产问题,提高蝙蝠算法的优化问题本地搜索能力,我们提出了一种称为OBMLBA的改进的BA。在所提出的算法中,引入了从搜索体验中的更有用信息的修改后的搜索方程来生成候选解决方案,并且Lévy航班随机步行与BA合并,以避免被困为局部最佳。此外,基于反对的学习(OBL)的概念嵌入到BA,以增强多样性和收敛能力。为了评估所提出的方法的性能,已经采用了16个基准函数。通过实验获得的结果证明了OBMLBA对全球优化问题的有效性和效率。与其他一些BA变体和其他最先进的算法的比较已经示出了所提出的方法显着提高了BA的性能。本文讨论了提出的大规模优化问题和现实世界优化问题的算法的性能,并将在未来的工作中进行研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号