首页> 外文OA文献 >Virtual machine scheduling strategy based on machine learning algorithms for load balancing
【2h】

Virtual machine scheduling strategy based on machine learning algorithms for load balancing

机译:基于机器学习算法的虚拟机调度策略进行负载平衡

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Abstract With the rapid increase of user access, load balancing in cloud data center has become an important factor affecting cluster stability. From the point of view of green scheduling, this paper proposed a virtual machine intelligent scheduling strategy based on machine learning algorithm to achieve load balancing of cloud data center. Firstly, a load forecasting algorithm based on genetic algorithm (SVR_GA), k-means clustering algorithm based on optimized min-max, and adaptive differential evolution algorithm (ESA_DE) to enhance local search ability are proposed to solve the load imbalance problem in cloud data center. The experimental results showed that compared with other classical algorithms, the proposed virtual machine scheduling strategy reduces the number of virtual machine migration by 94.5% and the energy consumption of cloud data center by 49.13%.
机译:摘要随着用户访问的快速增加,云数据中心的负载平衡已成为影响集群稳定性的重要因素。从绿色调度的角度来看,本文提出了一种基于机器学习算法的虚拟机智能调度策略,实现云数据中心的负载平衡。首先,基于优化的Min-Max的基于遗传算法(SVR_GA),K-MEASS聚类算法的负载预测算法,以及自适应差分演化算法(ESA_DE)以提高本地搜索能力,以解决云数据中的负载不平衡问题中央。实验结果表明,与其他经典算法相比,所提出的虚拟机调度策略将虚拟机迁移的数量减少了94.5%,云数据中心的能耗减少了49.13%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号