首页> 外文OA文献 >Reduction and Hamiltonian structures on duals of semidirect product Lie algebras
【2h】

Reduction and Hamiltonian structures on duals of semidirect product Lie algebras

机译:半直接积李代数对偶的约简和哈密顿结构

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

With the heavy top and compressible flow as guiding examples, this paper discusses the Hamiltonian structure of systems on duals of semidirect product Lie algebras by reduction from Lagrangian to Eulerian coordinates. Special emphasis is placed on the left-right duality which brings out the dual role of the spatial and body (i.e. Eulerian and convective) descriptions. For example, the heavy top in spatial coordinates has a Lie-Poisson structure on the dual of a semidirect product Lie algebra in which the moment of inertia is a dynamic variable. For compressible fluids in the convective picture, the metric tensor similarly becomes a dynamic variable. Relationships to the existing literature are given.
机译:以重顶和可压缩流动为指导实例,通过从拉格朗日坐标到欧拉坐标的简化,讨论了半直接积李代数对偶上的系统的哈密顿结构。特别强调左右二元性,它揭示了空间和身体(即欧拉和对流)描述的双重作用。例如,空间坐标中的重顶在半直接积Lie代数的对偶上具有Lie-Poisson结构,其中惯性矩是动态变量。对于对流图中的可压缩流体,度量张量类似地成为动态变量。给出了与现有文献的关系。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号