首页> 外文OA文献 >Free energy barrier for molecular motions in bistable 2rotaxane molecular electronic devices
【2h】

Free energy barrier for molecular motions in bistable 2rotaxane molecular electronic devices

机译:双稳态2轮烷分子电子器件中分子运动的自由能垒

摘要

Donor−acceptor binding of the π-electron-poor cyclophane cyclobis(paraquat-p-phenylene) (CBPQT^(4+)) with the π-electron-rich tetrathiafulvalene (TTF) and 1,5-dioxynaphthalene (DNP) stations provides the basis for electrochemically switchable, bistable [2]rotaxanes, which have been incorporated and operated within solid-state devices to form ultradense memory circuits (ChemPhysChem 2002, 3, 519−525; Nature 2007, 445, 414−417) and nanoelectromechanical systems. The rate of CBPQT^(4+) shuttling at each oxidation state of the [2]rotaxane dictates critical write-and-retention time parameters within the devices, which can be tuned through chemical synthesis. To validate how well computational chemistry methods can estimate these rates for use in designing new devices, we used molecular dynamics simulations to calculate the free energy barrier for the shuttling of the CBPQT^4+ ring between the TTF and the DNP. The approach used here was to calculate the potential of mean force along the switching pathway, from which we calculated free energy barriers. These calculations find a turn-on time after the rotaxane is doubly oxidized of ~10^9−7) s (suggesting that the much longer experimental turn-on time is determined by the time scale of oxidization). The return barrier from the DNP to the TTF leads to a predicted lifetime of 2.1 s, which is compatible with experiments.
机译:贫电子电子的环庚烯环双(百草枯-对亚苯基)(CBPQT ^(4+))与富π电子的四硫富瓦烯(TTF)和1,5-二氧萘(DNP)站的供体-受体结合提供了电化学可转换的双稳态[2]轮烷的基础,已将其掺入固态设备并在其中运行以形成超致密的存储电路(ChemPhysChem 2002,3,519-525; Nature 2007,445,414-417)和纳米机电系统。在[2]轮烷的每个氧化态下CBPQT ^(4+)的穿梭速率决定了器件内的关键写入和保留时间参数,可以通过化学合成对其进行调节。为了验证计算化学方法能如何很好地估计出这些速率,以用于设计新设备,我们使用分子动力学模拟计算了CTFQT ^ 4 +环在TTF和DNP之间穿梭的自由能垒。此处使用的方法是计算沿切换路径的平均力的潜力,由此我们可以计算出自由能垒。这些计算发现轮烷被双氧化后的开启时间为〜10 ^ 9-7)s(建议更长的实验开启时间由氧化的时间尺度决定)。从DNP到TTF的返回壁垒导致预计寿命为2.1 s,这与实验兼容。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号