The authors combine pruned tree-structured vector quantization (pruned TSVQ) with Itoh's (1987) universal noiseless coder. By combining pruned TSVQ with universal noiseless coding, they benefit from the “successive approximation” capabilities of TSVQ, thereby allowing progressive transmission of images, while retaining the ability to noiselessly encode images of unknown statistics in a provably asymptotically optimal fashion. Noiseless compression results are comparable to Ziv-Lempel and arithmetic coding for both images and finely quantized Gaussian sources.
展开▼