首页> 外文OA文献 >Semi-Automatic Fractional Snow Cover Monitoring from Near-Surface Remote Sensing in Grassland
【2h】

Semi-Automatic Fractional Snow Cover Monitoring from Near-Surface Remote Sensing in Grassland

机译:从草原近近遥感的半自动分数雪覆盖

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Snow cover is an important variable in both climatological and hydrological studies because of its relationship to environmental energy and mass flux. However, variability in snow cover can confound satellite-based efforts to monitor vegetation phenology. This research explores the utility of the PhenoCam Network cameras to estimate Fractional Snow Cover (FSC) in grassland. The goal is to operationalize FSC estimates from PhenoCams to inform and improve the satellite-based determination of phenological metrics. The study site is the Oakville Prairie Biological Field Station, located near Grand Forks, North Dakota. We developed a semi-automated process to estimate FSC from PhenoCam images through Python coding. Compared with previous research employing RGB images only, our use of the monochrome RGB + NIR (near-infrared) reduced pixel misclassification and increased accuracy. The results had an average RMSE of less than 8% FSC compared to visual estimates. Our pixel-based accuracy assessment showed that the overall accuracy of the images selected for validation was 92%. This is a promising outcome, although not every PhenoCam Network system has NIR capability.
机译:由于其与环境能量和质量通量的关系,雪覆盖是气候和水文研究中的一个重要变量。然而,雪覆盖的可变性可以混淆卫星的努力来监测植被候选。本研究探讨了Phenocam网络摄像机在草地估算了分数雪覆盖(FSC)的效用。目标是运作FSC估计来自Phenocams以提供信息化,以便于基于卫星测定的鉴别度量。该研究现场是奥克维尔大草原生物野外站,位于北达科他州大叉附近。我们开发了一个半自动过程,通过Python编码来估计来自Phenocam图像的FSC。与以前的研究仅采用RGB图像相比,我们使用单色RGB + NIR(近红外)减少像素错误分类并提高了精度。与视觉估计相比,结果平均RMSE小于8%的FSC。我们基于像素的精度评估表明,选择验证的图像的总体精度为92%。这是一个有前途的结果,但并非每个凤鱼类网络系统都有NIR能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号