首页> 外文OA文献 >Automatic Unsupervised Texture Recognition Framework Using Anisotropic Diffusion-Based Multi-Scale Analysis and Weight-Connected Graph Clustering
【2h】

Automatic Unsupervised Texture Recognition Framework Using Anisotropic Diffusion-Based Multi-Scale Analysis and Weight-Connected Graph Clustering

机译:使用基于各向异性扩散的多尺度分析和重连接图聚类自动无监督纹理识别框架

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A novel unsupervised texture classification technique is proposed in this research work. The proposed method clusters automatically the textures of an image collection in similarity classes whose number is not a priori known. A nonlinear diffusion-based multi-scale texture analysis approach is introduced first. It creates an effective scale-space by using a well-posed anisotropic diffusion filtering model that is proposed and approximated numerically here. A feature extraction process using a bank of circularly symmetric 2D filters is applied at each scale, then a rotation-invariant texture feature vector is achieved for the current image by combining the feature vectors computed at all these scales. Next, a weighted similarity graph, whose vertices correspond to the texture feature vectors and the weights of its edges are obtained from the distances computed between these vectors, is created. A novel weighted graph clustering technique is then applied to this similarity graph, to determine the texture classes. Numerical simulations and method comparisons illustrating the effectiveness of the described framework are also discussed in this work.
机译:在这项研究工作中提出了一种新颖的无监督纹理分类技术。所提出的方法群集自动块在相似性等级中的图像集合的纹理,其数量不是已知的先验。首先介绍非线性扩散的多尺度纹理分析方法。它通过使用良好的各向异性扩散滤波模型来创造有效的刻度空间,该尺寸散滤滤波模型在这里进行数字地提出和近似。每个刻度施加使用圆对称的2D滤波器组的特征提取处理,然后通过组合在所有这些比较上计算的特征向量来实现当前图像的旋转不变纹理特征向量。接下来,创建其顶点对应于纹理特征向量的加权相似性图以及其边缘的重量是从这些向量之间计算的距离而获得的。然后将新的加权图形聚类技术应用于该相似性图,以确定纹理类。在这项工作中还讨论了说明所描述框架的有效性的数值模拟和方法比较。

著录项

  • 作者

    Tudor Barbu;

  • 作者单位
  • 年度 2021
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号