首页> 外文OA文献 >Measurement Feedback Self-Tuning Weighted Measurement Fusion Kalman Filter for Systems with Correlated Noises
【2h】

Measurement Feedback Self-Tuning Weighted Measurement Fusion Kalman Filter for Systems with Correlated Noises

机译:测量反馈自调整加权测量融合Kalman滤波器用于相关噪声的系统

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

For the linear discrete stochastic systems with multiple sensors and unknown noise statistics, an online estimators of the noise variances and cross-covariances are designed by using measurement feedback, full-rank decomposition, and weighted least squares theory. Further, a self-tuning weighted measurement fusion Kalman filter is presented. The Fadeeva formula is used to establish ARMA innovation model with unknown noise statistics. The sampling correlated function of the stationary and reversible ARMA innovation model is used to identify the noise statistics. It is proved that the presented self-tuning weighted measurement fusion Kalman filter converges to the optimal weighted measurement fusion Kalman filter, which means its asymptotic global optimality. The simulation result of radar-tracking system shows the effectiveness of the presented algorithm.
机译:对于具有多个传感器和未知噪声统计的线性离散随机系统,通过使用测量反馈,全秩分解和加权最小二乘理论来设计噪声差异和交叉协方差的在线估算。此外,呈现了一种自调整加权测量融合卡尔曼滤波器。 Fadeeva公式用于建立具有未知噪声统计的ARMA创新模型。静止和可逆ARMA创新模型的采样相关功能用于识别噪声统计数据。事实证明,所提出的自调制加权测量融合卡尔曼滤波器收敛到最佳加权测量融合卡尔曼滤波器,这意味着其渐近全局最优性。雷达跟踪系统的仿真结果显示了算法的有效性。

著录项

  • 作者

    Xin Wang; Shu-Li Sun;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号