首页> 外文OA文献 >Undecimated Lifting Wavelet Packet Transform with Boundary Treatment for Machinery Incipient Fault Diagnosis
【2h】

Undecimated Lifting Wavelet Packet Transform with Boundary Treatment for Machinery Incipient Fault Diagnosis

机译:未传定的提升小波包变换,具有用于机械初期故障诊断的边界处理

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Effective signal processing in fault detection and diagnosis (FDD) is an important measure to prevent failure and accidents of machinery. To address the end distortion and frequency aliasing issues in conventional lifting wavelet transform, a Volterra series assisted undecimated lifting wavelet packet transform (ULWPT) is investigated for machinery incipient fault diagnosis. Undecimated lifting wavelet packet transform is firstly formulated to eliminate the frequency aliasing issue in traditional lifting wavelet packet transform. Next, Volterra series, as a boundary treatment method, is used to preprocess the signal to suppress the end distortion in undecimated lifting wavelet packet transform. Finally, the decomposed wavelet coefficients are trimmed to the original length as the signal of interest for machinery incipient fault detection. Experimental study on a reciprocating compressor is performed to demonstrate the effectiveness of the presented method. The results show that the presented method outperforms the conventional approach by dramatically enhancing the weak defect feature extraction for reciprocating compressor valve fault diagnosis.
机译:故障检测和诊断中的有效信号处理(FDD)是防止机械故障和事故的重要措施。为了解决传统的提升小波变换中的最终失真和频率混叠问题,研究了Volterra系列辅助未传定的提升小波包转换(ULWPT),用于机械初期的故障诊断。首先配制了未传定的提升小波包变换,以消除传统提升小波包变换中的频率叠种问题。接下来,作为边界处理方法的Volterra系列用于预处理信号以抑制未传定的提升小波分组变换的终端失真。最后,将分解的小波系数修整为原始长度作为机械初始故障检测的感兴趣的信号。进行对往复式压缩机的实验研究,以证明所提出的方法的有效性。结果表明,呈现的方法通过显着增强往复压缩机阀故障诊断的弱缺陷特征提取来优于传统方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号