首页> 外文OA文献 >An Overview of Moving Object Trajectory Compression Algorithms
【2h】

An Overview of Moving Object Trajectory Compression Algorithms

机译:移动对象轨迹压缩算法的概述

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Compression technology is an efficient way to reserve useful and valuable data as well as remove redundant and inessential data from datasets. With the development of RFID and GPS devices, more and more moving objects can be traced and their trajectories can be recorded. However, the exponential increase in the amount of such trajectory data has caused a series of problems in the storage, processing, and analysis of data. Therefore, moving object trajectory compression undoubtedly becomes one of the hotspots in moving object data mining. To provide an overview, we survey and summarize the development and trend of moving object compression and analyze typical moving object compression algorithms presented in recent years. In this paper, we firstly summarize the strategies and implementation processes of classical moving object compression algorithms. Secondly, the related definitions about moving objects and their trajectories are discussed. Thirdly, the validation criteria are introduced for evaluating the performance and efficiency of compression algorithms. Finally, some application scenarios are also summarized to point out the potential application in the future. It is hoped that this research will serve as the steppingstone for those interested in advancing moving objects mining.
机译:压缩技术是保留有用和有价值的数据的有效方法,以及从数据集中删除冗余和非必需数据。随着RFID和GPS设备的开发,可以跟踪越来越多的移动物体,可以记录其轨迹。但是,这种轨迹数据的量增加的指数增加已经导致存储,处理和数据分析中的一系列问题。因此,移动物体轨迹压缩无疑成为移动物体数据挖掘中的热点之一。若要提供概述,我们调查并总结了移动物体压缩的发展和趋势,并分析了近年来呈现的典型移动物体压缩算法。在本文中,我们首先总结了经典移动对象压缩算法的策略和实现过程。其次,讨论了关于移动物体及其轨迹的相关定义。第三,介绍了评估压缩算法性能和效率的验证标准。最后,一些应用方案也被概述来指出将来的潜在应用。希望这项研究能够成为有兴趣推进移动物体挖掘的人的踩踏石。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号