首页> 外文OA文献 >Exotic resonant level models in non-Abelian quantum Hall states coupled to quantum dots
【2h】

Exotic resonant level models in non-Abelian quantum Hall states coupled to quantum dots

机译:耦合量子点的非阿贝尔量子霍尔态的外来共振能级模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper, we study the coupling between a quantum dot and the edge of a non-Abelian fractional quantum Hall state. We assume the dot is small enough that its level spacing is large compared to both the temperature and the coupling to the spatially proximate bulk non-Abelian fractional quantum Hall state. We focus on the physics of level degeneracy with electron number on the dot. The physics of such a resonant level is governed by a k-channel Kondo model when the quantum Hall state is a Read-Rezayi state at filling fraction ν=2+k/(k+2) or its particle-hole conjugate at ν=2+2/(k+2). The k-channel Kondo model is channel symmetric even without fine tuning any couplings in the former state; in the latter, it is generically channel asymmetric. The two limits exhibit non-Fermi-liquid and Fermi-liquid properties, respectively, and therefore may be distinguished. By exploiting the mapping between the resonant level model and the multichannel Kondo model, we discuss the thermodynamic and transport properties of the system. In the special case of k=2, our results provide a distinct venue to distinguish between the Pfaffian and anti-Pfaffian states at filling fraction ν=5/2. We present numerical estimates for realizing this scenario in experiment.
机译:在本文中,我们研究了量子点与非阿贝尔分数量子霍尔态边缘之间的耦合。我们假设该点足够小,以使其与温度以及与空间上接近的块非阿贝尔分数量子霍尔态的耦合相比,其水平间距都较大。我们关注点电子上的电子数量级退化的物理学。当量子霍尔态为填充分数ν= 2 + k /(k + 2)时的Read-Rezayi态或其在ν=处的粒子-空穴共轭时,这种共振能级的物理过程由k通道Kondo模型控制。 2 + 2 /(k + 2)。即使在以前的状态下不对任何耦合进行微调,k通道的Kondo模型也是对称的。在后者中,它通常是信道不对称的。这两个极限分别显示非费米液体和费米液体性质,因此可以加以区分。通过利用共振能级模型和多通道近藤模型之间的映射,我们讨论了系统的热力学和传输性质。在k = 2的特殊情况下,我们的结果提供了一个独特的场所来区分填充分数ν= 5/2的Pfaffian状态和反Pfaffian状态。我们提供数值估计以在实验中实现此方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号