首页> 外文OA文献 >Estimation-based synthesis of H∞-optimal adaptive FIR filtersfor filtered-LMS problems
【2h】

Estimation-based synthesis of H∞-optimal adaptive FIR filtersfor filtered-LMS problems

机译:针对滤波LMS问题的基于H∞最优自适应FIR滤波器的基于估计的综合

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper presents a systematic synthesis procedure for H∞-optimal adaptive FIR filters in the context of an active noise cancellation (ANC) problem. An estimation interpretation of the adaptive control problem is introduced first. Based on this interpretation, an H∞ estimation problem is formulated, and its finite horizon prediction (filtering) solution is discussed. The solution minimizes the maximum energy gain from the disturbances to the predicted (filtered) estimation error and serves as the adaptation criterion for the weight vector in the adaptive FIR filter. We refer to this adaptation scheme as estimation-based adaptive filtering (EBAF). We show that the steady-state gain vector in the EBAF algorithm approaches that of the classical (normalized) filtered-X LMS algorithm. The error terms, however, are shown to be different. Thus, these classical algorithms can be considered to be approximations of our algorithm. We examine the performance of the proposed EBAF algorithm (both experimentally and in simulation) in an active noise cancellation problem of a one-dimensional (1-D) acoustic duct for both narrowband and broadband cases. Comparisons to the results from a conventional filtered-LMS (FxLMS) algorithm show faster convergence without compromising steady-state performance and/or robustness of the algorithm to feedback contamination of the reference signal.
机译:本文提出了一种在有源噪声消除(ANC)问题的背景下H∞最优自适应FIR滤波器的系统综合程序。首先介绍自适应控制问题的估计解释。在此解释的基础上,提出了H∞估计问题,并讨论了其有限水平预测(滤波)解决方案。该解决方案最大程度地减少了从干扰到预测(滤波)估计误差的最大能量增益,并用作自适应FIR滤波器中权重矢量的自适应准则。我们将此适应方案称为基于估计的自适应滤波(EBAF)。我们证明了EBAF算法中的稳态增益向量接近经典的(归一化)filtered-X LMS算法。但是,错误项显示为不同。因此,可以将这些经典算法视为我们算法的近似值。我们在窄带和宽带情况下,在一维(1-D)声波导管的主动噪声消除问题中,检查了提出的EBAF算法的性能(在实验和仿真中)。与常规滤波LMS(FxLMS)算法的结果进行比较,结果显示收敛速度更快,而不会影响稳态性能和/或算法对反馈参考信号的污染的鲁棒性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号