首页> 外文OA文献 >Neural Network Compensation Control for Output Power Optimization of Wind Energy Conversion System Based on Data-Driven Control
【2h】

Neural Network Compensation Control for Output Power Optimization of Wind Energy Conversion System Based on Data-Driven Control

机译:基于数据驱动控制的风能转换系统输出功率优化神经网络补偿控制

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Due to the uncertainty of wind and because wind energy conversion systems (WECSs) have strong nonlinear characteristics, accurate model of the WECS is difficult to be built. To solve this problem, data-driven control technology is selected and data-driven controller for the WECS is designed based on the Markov model. The neural networks are designed to optimize the output of the system based on the data-driven control system model. In order to improve the efficiency of the neural network training, three different learning rules are compared. Analysis results and SCADA data of the wind farm are compared, and it is shown that the method effectively reduces fluctuations of the generator speed, the safety of the wind turbines can be enhanced, the accuracy of the WECS output is improved, and more wind energy is captured.
机译:由于风的不确定度,因为风能转换系统(WECSS)具有强大的非线性特性,因此难以建造了精确的WEC模型。为了解决这个问题,选择了数据驱动的控制技术,并且基于Markov模型设计了WECS的数据驱动控制器。神经网络旨在基于数据驱动控制系统模型来优化系统的输出。为了提高神经网络训练的效率,比较了三种不同的学习规则。比较了风电场的分析结果和SCADA数据,并表明该方法有效地降低了发电机速度的波动,风力涡轮机的安全性可以提高,WECS输出的准确性得到改善,而且风能更多被捕获了。

著录项

  • 作者

    T. Li; A. J. Feng; L. Zhao;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号