首页> 外文OA文献 >First Principles Study of the Ignition Mechanism for Hypergolic Bipropellants: N,N,N′,N′-Tetramethylethylenediamine (TMEDA) and N,N,N′,N′-Tetramethylmethylenediamine (TMMDA) with Nitric Acid
【2h】

First Principles Study of the Ignition Mechanism for Hypergolic Bipropellants: N,N,N′,N′-Tetramethylethylenediamine (TMEDA) and N,N,N′,N′-Tetramethylmethylenediamine (TMMDA) with Nitric Acid

机译:超高分子量双推进剂着火机理的第一原理研究:N,N,N',N'-四甲基乙二胺(TMEDA)和N,N,N',N'-四甲基亚甲基二胺(TMMDA)与硝酸

摘要

We report quantum mechanics calculations (B3LYP flavor of density functional theory) to determine the chemical reaction mechanism underlying the hypergolic reaction of pure HNO_3 with N,N,N′,N′-tetramethylethylenediamine (TMEDA) and N,N,N′,N′-tetramethylmethylenediamine (TMMDA). TMEDA and TMMDA are dimethyl amines linked by two CH_2 groups or one CH_2 group, respectively, but ignite very differently with HNO_3. We explain this dramatic difference in terms of the role that N lone-pair electrons play in activating adjacent chemical bonds. We identify two key atomistic level factors that affect the ignition delay: (1) The exothermicity for formation of the dinitrate salt from TMEDA or TMMDA. With only a single CH_2 group between basic amines, the diprotonation of TMMDA results in much stronger electrostatic repulsion, reducing the heat of dinitrate salt formation by 6.3 kcal/mol. (2) The reaction of NO_2 with TMEDA or TMMDA, which is the step that releases the heat and reactive species required to propagate the reaction. Two factors of TMEDA promote the kinetics by providing routes with low barriers to oxidize the C: (a) formation of a stable intermediate with a C–C double bond and (b) the lower bond energy for breaking the C–C single bond (by 18 kcal/mol comparing to alkane) between two amines. Both factors would decrease the ignition delay for TMEDA versus TMMDA. The same factors also explain the shorter ignition delay of 1,4-dimethylpiperazine (DMPipZ) versus 1,3,5-trimethylhexahydro-1,3,5-triazine (TMTZ). These results indicate that TMEDA and DMPipZ are excellent green replacements for hydrazines as the fuel in bipropellants.
机译:我们报告量子力学计算(密度泛函理论的B3LYP风味),以确定纯HNO_3与N,N,N',N'-四甲基乙二胺(TMEDA)和N,N,N',N的高声反应的化学反应机理′-四甲基亚甲基二胺(TMMDA)。 TMEDA和TMMDA是分别由两个CH_2基团或一个CH_2基团连接的二甲基胺,但与HNO_3的点燃方式非常不同。我们根据N个孤对电子在激活相邻化学键中的作用来解释这种巨大差异。我们确定了影响点火延迟的两个关键的原子级因素:(1)由TMEDA或TMMDA形成的二硝酸盐放热。在碱性胺之间只有一个CH_2基团的情况下,TMMDA的双质子化作用会产生更强的静电排斥力,从而使形成硝酸盐的热量降低6.3 kcal / mol。 (2)NO_2与TMEDA或TMMDA的反应,该步骤释放了传播反应所需的热量和反应性物质。 TMEDA的两个因素通过为氧化C提供低障碍的途径来促进动力学:(a)形成具有C-C双键的稳定中间体,以及(b)降低C-C单键的键能较低(与两种胺之间的烷烃相比,浓度降低了18 kcal / mol。这两个因素都会减少TMEDA与TMMDA的点火延迟。相同的因素还解释了1,4-二甲基哌嗪(DMPipZ)与1,3,5-三甲基六氢-1,3,5-三嗪(TMTZ)相比更短的点火延迟。这些结果表明,TMEDA和DMPipZ是肼作为双推进剂燃料的优良绿色替代品。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号