Abstract Cyclotron resonance is now applied as one of the important means for heating plasma in a fusion reactor. We examined this phenomenon from the viewpoint of electron gyration orbits through a solution of the linearized relativistic equation of motion. We found a powerful term that accelerates a relativistic charged particle largely at a resonance point when a magnetic field strength is very large. In this study, aiming an effect of this term, we consider applying a resonance phenomenon to reducing the number of charged particles that escape from a magnetic mirror reactor. We install a long supplemental device at the exit of a main magnetic bottle and make a cyclotron resonance space within the device, as shown in Fig. 7. If velocities (perpendicular to a magnetic field) of charged particles are accelerated largely within the cyclotron resonance space, the reflection efficiency of a magnetic mirror behind the resonance space ought to be improved. Based on this idea, we discuss such a supplemental device for recovering the maximum number of escaping charged particles.
展开▼