首页> 外文OA文献 >Minimum Distance Estimation of Possibly Noninvertible Moving Average Models
【2h】

Minimum Distance Estimation of Possibly Noninvertible Moving Average Models

机译:可能不可行移动平均模型的最小距离估计

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper considers estimation of moving average (MA) models with non-Gaussian errors. Information in higher-order cumulants allows identification of the parameters without imposing invertibility. By allowing for an unbounded parameter space, the generalized method of moments estimator of the MA(1) model has classical (root-T and asymptotic normal) properties when the moving average root is inside, outside, and on the unit circle. For more general models where the dependence of the cumulants on the model parameters is analytically intractable, we consider simulation-based estimators with two features that distinguish them from the existing work in the literature. First, identification now requires information from the second and higher-order moments of the data. Thus, in addition to an autoregressive model, new auxiliary regressions need to be considered. Second, the errors used to simulate the model are drawn from a flexible functional form to accommodate a large class of distributions with non-Gaussian features. The proposed simulation estimators are also asymptotically normally distributed without imposing the assumption of invertibility. In the application considered, there is overwhelming evidence of non-invertibility in the Fama-French portfolio returns.
机译:本文考虑具有非高斯误差的移动平均(MA)模型的估计。高阶累积量中的信息允许在不施加可逆性的情况下识别参数。通过允许无限制的参数空间,当移动平均根在单位圆内,外和单位圆上时,MA(1)模型的矩估计的通用方法具有经典的(根T和渐近法线)性质。对于累积量对模型参数的依赖在分析上难以解决的更一般的模型,我们考虑基于仿真的估计量,该估计量具有两个特征,可将其与文献中的现有工作区分开。首先,识别现在需要来自数据的第二阶和更高阶矩的信息。因此,除了自回归模型外,还需要考虑新的辅助回归。其次,用于模拟模型的误差来自灵活的函数形式,以适应具有非高斯特征的一大类分布。拟议的仿真估计量也渐近正态分布,而不强加可逆性假设。在所考虑的应用中,有大量证据表明,Fama-French投资组合收益不可逆。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号