首页> 外文OA文献 >Linear SVM-Based Android Malware Detection for Reliable IoT Services
【2h】

Linear SVM-Based Android Malware Detection for Reliable IoT Services

机译:基于线性SVM的Android恶意软件检测可靠的物联网服务

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Current many Internet of Things (IoT) services are monitored and controlled through smartphone applications. By combining IoT with smartphones, many convenient IoT services have been provided to users. However, there are adverse underlying effects in such services including invasion of privacy and information leakage. In most cases, mobile devices have become cluttered with important personal user information as various services and contents are provided through them. Accordingly, attackers are expanding the scope of their attacks beyond the existing PC and Internet environment into mobile devices. In this paper, we apply a linear support vector machine (SVM) to detect Android malware and compare the malware detection performance of SVM with that of other machine learning classifiers. Through experimental validation, we show that the SVM outperforms other machine learning classifiers.
机译:目前通过智能手机应用程序监控和控制许多物联网(IoT)服务。通过将IOT与智能手机组合,已向用户提供了许多方便的IOT服务。但是,在此类服务中存在不利的基础影响,包括入侵隐私和信息泄漏。在大多数情况下,移动设备已经变得杂乱,具有重要的个人用户信息,因为通过它们提供了各种服务和内容。因此,攻击者正在将其攻击范围扩展到现有PC和Internet环境中的攻击范围到移动设备中。在本文中,我们应用了线性支持向量机(SVM)来检测Android恶意软件,并将SVM的恶意软件检测性能与其他机器学习分类器的恶意软件检测性能进行比较。通过实验验证,我们表明SVM优于其他机器学习分类器。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号