首页> 外文OA文献 >Supervised and unsupervised artificial neural networks for analysis of diatom abundance in tropical Putrajaya Lake, Malaysia
【2h】

Supervised and unsupervised artificial neural networks for analysis of diatom abundance in tropical Putrajaya Lake, Malaysia

机译:有监督和无监督的人工神经网络,用于分析马来西亚热带布城湖中的硅藻丰度

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Five years of data from 2001 until 2006 of warm unstratified shallow, oligotrophic to mesothropic tropical Putrajaya Lake, Malaysia were used to study pattern discovery and forecasting of the diatom abundance using supervised and unsupervised artificial neural networks. Recurrent artificial neural network (RANN) was used for the supervised artificial neural network and Kohonen Self Organizing Feature Maps (SOM) was used for unsupervised artificial neural network. RANN was applied for forecasting of diatom abundance. The RANN performance was measured in terms of root mean square error (RMSE) and the value reported was 29.12 cell/mL. Classification and clustering by SOM and sensitivity analysis from the RANN were used to reveal the relationship among water temperature, pH, nitrate nitrogen (NO3-N) concentration, chemical oxygen demand (COD) concentration and diatom abundance. The results indicated that the combination of supervised and unsupervised artificial neural network is important not only for forecasting algae abundance but also in reasoning and understanding ecological relationships. This in return will assist in better management of lake water quality.
机译:从2001年到2006年的5年数据,使用马来西亚无监督到热带温带,贫营养性的中营养热带布城湖进行了研究,并使用有监督和无监督的人工神经网络研究了硅藻丰度的模式发现和预测。循环人工神经网络(RANN)用于有监督的人工神经网络,而Kohonen自组织特征图(SOM)用于无​​监督的人工神经网络。 RANN用于预测硅藻的丰度。根据均方根误差(RMSE)来测量RANN性能,报告的值为29.12细胞/ mL。通过SOM分类和聚类以及RANN的敏感性分析来揭示水温,pH,硝酸盐氮(NO3-N)浓度,化学需氧量(COD)浓度和硅藻丰度之间的关系。结果表明,有监督和无监督的人工神经网络的结合不仅对预测藻类的丰度,而且对于推理和理解生态关系都具有重要意义。作为回报,这将有助于更好地管理湖泊水质。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号