首页> 外文OA文献 >Region Based CNN for Foreign Object Debris Detection on Airfield Pavement
【2h】

Region Based CNN for Foreign Object Debris Detection on Airfield Pavement

机译:基于地区的CNN用于气田路面对外物体碎片检测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper, a novel algorithm based on convolutional neural network (CNN) is proposed to detect foreign object debris (FOD) based on optical imaging sensors. It contains two modules, the improved region proposal network (RPN) and spatial transformer network (STN) based CNN classifier. In the improved RPN, some extra select rules are designed and deployed to generate high quality candidates with fewer numbers. Moreover, the efficiency of CNN detector is significantly improved by introducing STN layer. Compared to faster R-CNN and single shot multiBox detector (SSD), the proposed algorithm achieves better result for FOD detection on airfield pavement in the experiment.
机译:本文提出了一种基于卷积神经网络(CNN)的新型算法来检测基于光学成像传感器的异物碎片(FOD)。它包含两个模块,改进的区域提案网络(RPN)和空间变压器网络(STN)的CNN分类器。在改进的RPN中,设计并部署了一些额外的选择规则,以产生具有更少数字的高质量候选者。此外,通过引入STN层显着改善CNN检测器的效率。与更快的R-CNN和单次MultiBox检测器(SSD)相比,所提出的算法在实验中对机场路面的FOD检测获得了更好的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号