首页> 外文OA文献 >A Remote Sensing and Airborne Edge-Computing Based Detection System for Pine Wilt Disease
【2h】

A Remote Sensing and Airborne Edge-Computing Based Detection System for Pine Wilt Disease

机译:基于遥感与空气脱位基于Pine枯萎病的检测系统

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The pine wilt disease (PWD) is one of the most dangerous and destructive diseases to coniferous forests. The rapid spread trend and strong destruction directly threaten the security of forests. The complex spread pattern and the hard labor process of diagnosis call for an effective way to detect the infected areas. In this paper, an airborne edge-computing and lightweight deep learning based system are designed for PWD detection by using imagery sensors. Unmanned aerial vehicle (UAV) is firstly utilized to realize a large-scale coverage of forests, which can substantially reduce the hard labor. Except for infected trees, a large number of irrelevant images are also acquired by the UAV, which will overload the burden of process and transmission. Then a lightweight improved YOLOv4-Tiny based method (named as YOLOv4-Tiny-3Layers) is proposed to filter these uninterested images by leveraging the computation capability of edge computing, which can realize a fast coarse-grained detection with a low missing rate. Finally, all the remaining images are transmitted to the ground workstation for the final fine-grained detection. Experimental results show that the proposed system can implement a fast detection with superior performance as compared to other methods, which helps to detect the infected pine trees in a quick manner.
机译:松树枯萎病(PWD)是针叶林最危险和最具破坏性的疾病之一。快速传播趋势和强烈的破坏直接威胁着森林的安全。复杂的传播模式和诊断疾病的努力探讨了检测受感染区域的有效方法。在本文中,设计了一种通过使用图像传感器的PWD检测设计了空降的边缘计算和轻量级的深度基于深度的系统。首先利用无人驾驶飞行器(UAV)来实现森林的大规模覆盖,这可以大大减少艰难的劳动力。除了受感染的树木外,无人机也会收购大量不相关的图像,这将使过程和传输的负担过载。然后,建议通过利用边缘计算的计算能力来过滤这些无趣的图像的轻量级改进的基于yolov4-tiny的方法,这可以实现具有低失数率的快速粗粒度检测。最后,所有剩余图像都被传输到地面工作站以进行最终细粒度检测。实验结果表明,与其他方法相比,该制定的系统可以实现具有卓越性能的快速检测,这有助于以快速的方式检测感染的松树。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号