首页> 外文OA文献 >Automated Model Construction for Combined Sewer Overflow Prediction Based on Efficient LASSO Algorithm
【2h】

Automated Model Construction for Combined Sewer Overflow Prediction Based on Efficient LASSO Algorithm

机译:基于高效套索算法的下水道溢流预测自动模型施工

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The prediction of combined sewer overflow (CSO)udoperation in urban environments presents a challenging taskudfor water utilities. The operation of CSOs (most often in heavyudrainfall conditions) prevents houses and businesses from flooding.udHowever, sometimes, CSOs do not operate as they should,udpotentially bringing environmental pollution risks. Therefore,udCSOs should be appropriately managed by water utilities, highlightingudthe need for adapted decision support systems. Thisudpaper proposes an automated CSO predictive model constructionudmethodology using field monitoring data, as a substituteudfor the commonly established hydrological-hydraulic modellingudapproach for time-series prediction of CSO statuses. It is audsystematic methodology factoring in all monitored field variablesudto construct time-series dependencies for CSO statuses. Theudmodel construction process is largely automated with little humanudintervention, and the pertinent variables together with theirudassociated time lags for every CSO are holistically and automaticallyudgenerated. A fast LASSO (Least Absolute Shrinkage andudSelection Operator) solution generating scheme is proposed toudexpedite the model construction process, where matrix inversionsudare effectively eliminated. The whole algorithm works in audstepwise manner, invoking either an incremental or decrementaludmovement for including or excluding one model regressor into,udor from, the predictive model at every step. The computationaludcomplexity is thereby analysed with the pseudo code provided.udActual experimental results from both single-step ahead (i.e., 15udmins) and multi-step ahead predictions are finally produced andudanalysed on a UK pilot area with various types of monitoring dataudmade available, demonstrating the efficiency and effectiveness ofudthe proposed approach.
机译:对城市环境中下水道溢流(CSO)的综合预测运行对水务公司而言是一项具有挑战性的任务 ud。 CSO的运行(通常在重度/降雨情况下)可防止房屋和企业遭受洪水泛滥。 ud然而,有时,CSO并未按应有的方式运行,有可能带来环境污染风险。因此, udCSO应该由水务公司进行适当的管理,强调 ud需要适应性的决策支持系统。该 udpaper提出了一种使用现场监视数据的自动CSO预测模型构建 udmethodology,以替代 ud为通常建立的CSO状态的时间序列预测水文-液压建模 udappach。它是一种 ud系统的方法,将所有受监视的字段变量 ud分解为CSO状态的时间序列依存关系。 udmodel的构建过程在很大程度上是自动化的,几乎不需要人工干预,并且针对每个CSO的相关变量及其与之相关的时滞都是整体自动生成的。提出了一种快速的LASSO(最小绝对收缩和udSelection算子)解决方案生成方案,以加快模型构建过程,有效地消除了矩阵求逆。整个算法以逐步的方式工作,在每一步都调用增量或递减的增量,以将一个模型回归变量包括在预测模型中或从预测模型中排除。因此,使用提供的伪代码来分析计算 udcomplexity。 ud最终在英国各种类型的试点地区产生并提前进行了单步提前(即15 udmins)和多步提前预测的实际实验结果监控数据可用,证明了该方法的效率和有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号