首页> 外文OA文献 >High Performance Aqueous Li-Ion Flow Capacitor Realized Through Microstructure Design of Suspension Electrode
【2h】

High Performance Aqueous Li-Ion Flow Capacitor Realized Through Microstructure Design of Suspension Electrode

机译:高性能水性锂离子流量通过悬架电极的微观结构设计实现

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Suspension electrode is the core of flowable electrochemical energy storage systems, which are considered suitable for large-scale energy storage. Nevertheless, obtaining suspension electrodes with both low viscosity and high conductivity is still a big challenge. In present work, spinel LiMn2O4 was chosen as an example to make suspension with low viscosity and high conductivity through microstructure morphology control of solid particles and the contact mode between active materials and conductive additives in suspension electrode. By coating a thin layer of polyaniline on the surface of spherical spinel LiMn2O4, the resulting suspension showed much higher electronic conductivity (about 10 times) and lower viscosity (about 4.5 times) as compared to irregular and bare spinel LiMn2O4-based suspension counterpart. As a result, the Li-ion flow capacitor based on LiMn2O4 and activated carbon suspensions exhibited a record energy density of 27.4 W h L−1 at a power density of 22.5 W L−1 under static condition to date, and can be smoothly work under an intermittent-flow mode. The strategy reported in this work is an effective way for obtaining suspension electrodes with low viscosity and high electronic conductivity simultaneously. It can not only be used in the flow capacitors, but also can be extended to other flowable electrochemical energy storage systems.
机译:悬架电极是可流动电化学能量存储系统的核心,其被认为适用于大规模的能量存储。然而,以低粘度和高导电性获得悬浮电极仍然是一个很大的挑战。在目前的作用中,选择尖晶石LiMn2O4作为实施例,以使悬浮液和通过固体颗粒的微观结构形态控制和活性材料与悬浮电极中的导电添加剂之间的接触模式的高粘度和高导电性。通过在球形尖晶石LIMN2O4的表面上涂覆薄的聚苯胺,所得悬浮液显示出与不规则和裸瞳的LIMN2O4的悬浮对应物相比,所得悬浮液显示出更高的电子电导率(约10次)和较低的粘度(约4.5倍)。结果,基于LIMN2O4和活性炭悬浮液的锂离子流量电容器在迄今为止的静态条件下的功率密度为22.4WH L-1的记录能量密度为27.4WHL-1,并且可以平稳地工作间歇流模式。本作作品中报告的策略是一种有效的方法,用于同时获得具有低粘度和高电子电导率的悬浮电极。它不仅可以用于流电容器,而且还可以扩展到其他可流动的电化学能量存储系统。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号