首页> 外文OA文献 >Detecting Activation in fMRI Data: An Approach Based on Sparse Representation of BOLD Signal
【2h】

Detecting Activation in fMRI Data: An Approach Based on Sparse Representation of BOLD Signal

机译:检测FMRI数据中的激活:一种基于粗体稀疏表示的方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper proposes a simple yet effective approach for detecting activated voxels in fMRI data by exploiting the inherent sparsity property of the BOLD signal in temporal and spatial domains. In the time domain, the approach combines the General Linear Model (GLM) with a Least Absolute Deviation (LAD) based regression method regularized by the pseudonorm l0 to promote sparsity in the parameter vector of the model. In the spatial domain, detection of activated regions is based on thresholding the spatial map of estimated parameters associated with a particular stimulus. The threshold is calculated by exploiting the sparseness of the BOLD signal in the spatial domain assuming a Laplacian distribution model. The proposed approach is validated using synthetic and real fMRI data. For synthetic data, results show that the proposed approach is able to detect most activated voxels without any false activation. For real data, the method is evaluated through comparison with the SPM software. Results indicate that this approach can effectively find activated regions that are similar to those found by SPM, but using a much simpler approach. This study may lead to the development of robust spatial approaches to further simplifying the complexity of classical schemes.
机译:本文提出了一种简单但有效的方法,可以通过利用时间和空间域中的粗体信号的固有稀疏性来检测FMRI数据中的活化体素。在时域中,该方法将具有最小绝对偏差(LAD)基于绝对偏差(LAD)的回归方法组合的伪线性模型(GLM)将基于伪谐波L0进行规律,以促进模型的参数向量中的稀疏性。在空间域中,检测激活区域是基于阈值处理与特定刺激相关的估计参数的空间映射。假设Laplacian分布模型利用空间域中的粗信号的稀疏来计算阈值。使用合成和真实FMRI数据验证所提出的方法。对于合成数据,结果表明,该方法能够检测到大多数激活的体素而没有任何错误激活。对于实际数据,通过与SPM软件的比较来评估该方法。结果表明,这种方法可以有效地找到与SPM发现的相似的激活区域,而是使用更简单的方法。本研究可能导致强大的空间方法的发展,以进一步简化古典方案的复杂性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号