首页> 外文OA文献 >A Multinomial DGA Classifier for Incipient Fault Detection in Oil-Impregnated Power Transformers
【2h】

A Multinomial DGA Classifier for Incipient Fault Detection in Oil-Impregnated Power Transformers

机译:用于油浸渍电力变压器中初期故障检测的多项式DGA分类器

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This study investigates the use of machine-learning approaches to interpret Dissolved Gas Analysis (DGA) data to find incipient faults early in oil-impregnated transformers. Transformers are critical pieces of equipment in transmitting and distributing electrical energy. The failure of a single unit disturbs a huge number of consumers and suppresses economic activities in the vicinity. Because of this, it is important that power utility companies accord high priority to condition monitoring of critical assets. The analysis of dissolved gases is a technique popularly used for monitoring the condition of transformers dipped in oil. The interpretation of DGA data is however inconclusive as far as the determination of incipient faults is concerned and depends largely on the expertise of technical personnel. To have a coherent, accurate, and clear interpretation of DGA, this study proposes a novel multinomial classification model christened KosaNet that is based on decision trees. Actual DGA data with 2912 entries was used to compute the performance of KosaNet against other algorithms with multiclass classification ability namely the decision tree, k-NN, Random Forest, Naïve Bayes, and Gradient Boost. Investigative results show that KosaNet demonstrated an improved DGA classification ability particularly when classifying multinomial data.
机译:本研究调查了使用机器学习方法来解释溶解的气体分析(DGA)数据,以在浸油变压器早期寻找初期的故障。变压器是传输和分配电能的关键设备。单个单位的失败扰乱了大量消费者并抑制了附近的经济活动。因此,重要的是,电力公用公司高度优先考虑关键资产的情况。对溶解气体的分析是一种普遍用于监测浸入油中变压器条件的技术。然而,就初期缺失的确定而不是依赖技术人员的专业知识,对DGA数据的解释是不确定的。本研究提出了对DGA的连贯,准确和清晰的解读,提出了一种基于决策树的新型多项式分类模型克里斯汀Kosanet。具有2912条目的实际DGA数据用于计算KOSANET对具有多级别算法的算法的性能,即决策树,K-NN,随机林,天真贝叶斯和梯度提升。调查结果表明,KOSANET表明,特别是在分类多项数据时,特别是在分类多项数据时提高了DGA分类能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号