首页> 外文OA文献 >Membership-Degree Preserving Discriminant Analysis with Applications to Face Recognition
【2h】

Membership-Degree Preserving Discriminant Analysis with Applications to Face Recognition

机译:与应用面对识别的征区歧视分析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In pattern recognition, feature extraction techniques have been widely employed to reduce the dimensionality of high-dimensional data. In this paper, we propose a novel feature extraction algorithm called membership-degree preserving discriminant analysis (MPDA) based on the fisher criterion and fuzzy set theory for face recognition. In the proposed algorithm, the membership degree of each sample to particular classes is firstly calculated by the fuzzy k-nearest neighbor (FKNN) algorithm to characterize the similarity between each sample and class centers, and then the membership degree is incorporated into the definition of the between-class scatter and the within-class scatter. The feature extraction criterion via maximizing the ratio of the between-class scatter to the within-class scatter is applied. Experimental results on the ORL, Yale, and FERET face databases demonstrate the effectiveness of the proposed algorithm.
机译:在图案识别中,已经广泛用于降低高维数据的维度的特征提取技术。本文提出了一种新颖的特征提取算法,称为隶属度保存判别分析(MPDA),基于Fisher标准和模糊集理论进行人脸识别。在所提出的算法中,首先通过模糊K-最近邻(FKNN)算法来计算每个样本和类中心之间的相似性的每个样本到特定类别的隶属度,然后将隶属度结合到其中的定义阶级之间的散射和课堂散射。采用特征提取标准,通过最大化级别散射与级联散射的比率。 Orl,耶鲁和Feret面部数据库上的实验结果证明了所提出的算法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号