首页> 外文OA文献 >BRIDGE PAVEMENT CRACK DETECTION UNDER UNEVEN ILLUMINATION USING IMPROVED PCNN ALGORITHM
【2h】

BRIDGE PAVEMENT CRACK DETECTION UNDER UNEVEN ILLUMINATION USING IMPROVED PCNN ALGORITHM

机译:使用改进的PCNN算法,桥接路面裂缝检测下不均匀照明

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

For bridge pavement cracks under uneven illumination, the existing image segmentation algorithm does not remove this effect, and the segmentation effect is affected. In this paper, the image preprocessing consists of two parts: the process of removing uneven illumination and image noise, and the traditional bilateral filtering is improved based on the stationary wavelet algorithm (Cross-bilateral filtering). In the image segmentation part, the traditional PCNN (Pulse Coupled Neural Network) model parameters and the number of iterations are difficult to determine reasonably, and the use of a certain complexity makes it difficult to automate. This paper combined the synaptic integration characteristics of neurons, image gray and spatial features, to simplify PCNN model. The improved PCNN algorithm (SPCNN) based on the gray threshold of Markov network directly completes the segmentation without the need to manually set parameters and determine the optimal number of iterations. Through the analysis of the experimental results, the following three conclusions were drawn. (1) Compared with the histogram equalization, the enhancement algorithm of this paper removed the influence of illumination well and had advantages for the subsequent segmentation processing. (2)The cross-bilateral filtering algorithm could improve the image signal-to- noise ratio from 18.855 to 32.037, which was better than the original bilateral filtering algorithm. (3) The average segmentation accuracy rate of segmentation of SPCNN algorithm was more that 90%. Compared with the traditional PCNN method, this method is better in subjective visual effects and objective segmentation performance, less time consuming.
机译:对于桥接路面裂缝在不均匀照明下,现有的图像分割算法不会消除这种效果,并且分割效果受到影响。在本文中,图像预处理由两部分组成:除去不均匀照明和图像噪声的过程,以及传统的双侧滤波基于静止小波算法(交叉双边滤波)改进。在图像分段部分中,传统的PCNN(脉冲耦合神经网络)模型参数和迭代的数量难以合理地确定,并且使用某种复杂性使得难以自动化。本文综合了神经元,图像灰色和空间特征的突触集成特性,简化了PCNN模型。基于Markov网络的灰度阈值的改进的PCNN算法(SPCNN)直接完成了分割,无需手动设置参数并确定最佳迭代次数。通过分析实验结果,提取以下三次结论。 (1)与直方图均衡相比,本文的增强算法消除了照明井的影响,并具有随后的分割处理的优点。 (2)跨双侧滤波算法可以从18.855到32.037提高图像信噪比,比原始双边滤波算法更好。 (3)SPCNN算法分割的平均分割精度率更多,更高了90%。与传统的PCNN方法相比,这种方法在主观视觉效果和客观分割性能下更好,耗时较少。

著录项

  • 作者

    S. L. Su; T. Gong;

  • 作者单位
  • 年度 2020
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号