首页> 外文OA文献 >UNSUPERVISED METHODOLOGY TO IN-SEASON MAPPING OF SUMMER CROPS IN URUGUAY WITH MODIS EVI’S TEMPORAL SERIES AND MACHINE LEARNING
【2h】

UNSUPERVISED METHODOLOGY TO IN-SEASON MAPPING OF SUMMER CROPS IN URUGUAY WITH MODIS EVI’S TEMPORAL SERIES AND MACHINE LEARNING

机译:乌拉圭夏季作物的季节性临时映射与MODIS EVI的时间系列和机器学习的无监督方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper presents a new methodology for mapping summer crops in Uruguay, during the season, based on time-series analysis of the EVI vegetation index derived from the MODIS sensor. Time-series were processed with the k-means unsupervised machine learning algorithm. For this algorithm, the ideal number of clusters was estimated using the elbow method. Once the clusters were obtained, for each one, the average phenological signature was adjusted using a nonlinear smoothing spline regression technique. Additionally, using the derivative analysis, the key points of the curve were estimated (minimum, maximum and inflection points). When analyzing the average signature of each cluster, those whose signature follows the seasonal pattern of an agricultural crop (similar to a Gaussian function) were selected to generate a binary map of crops/non-crops. The estimated crop area is 2,336,525 hectares, higher than the official statistics of 1,667,400 hectares for the 2014–15 season. This overestimation can be explained by the resolution of the MODIS pixel (250 meters), where each has a different degree of purity; and commission errors. The methodology was validated with 5,317 ground truth points, with a general accuracy of 95.8%, kappa index of 85.6, production and user accuracy of 85.1% and 91.3% for crops/non-crops.
机译:本文提出了一种新的方法,用于在季节绘制乌拉圭的夏季作物,基于源自MODIS传感器的EVI植被指数的时间序列分析。用K-Means无监督机器学习算法处理时间序列。对于该算法,使用弯头方法估计理想的簇数。一旦获得簇,每个簇,使用非线性平滑花键回归技术调整平均鉴别签名。另外,使用衍生物分析,估计曲线的关键点(最小,最大和拐点)。当分析每个簇的平均签名时,选择符号遵循农业作物的季节性模式(类似于高斯函数)的那些,以产生作物/非作物的二进制图。估计的作物面积为2,336,525公顷,高于2014-15赛季1,667,400公顷的官方统计。这种高估可以通过MODIS像素(250米)的分辨率来解释,每个都具有不同程度的纯度;和佣金错误。该方法验证了5,317个地面真理点,一般准确性为95.8%,κ指数为85.6,生产和用户准确性为85.1%和91.3%,而作物/非农作物为91.3%。

著录项

  • 作者

    A. Cal; G. Tiscornia;

  • 作者单位
  • 年度 2020
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号