首页> 外文OA文献 >A Review of the Turbine Cooling Fraction for Very High Turbine Entry Temperature Helium Gas Turbine Cycles for Generation IV Reactor Power Plants
【2h】

A Review of the Turbine Cooling Fraction for Very High Turbine Entry Temperature Helium Gas Turbine Cycles for Generation IV Reactor Power Plants

机译:逆涡轮机入口温度氦气涡轮机循环促进涡轮冷却级分的综述

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The potential for high Turbine Entry Temperatures (TET) turbines for Nuclear Power Plants (NPPs) require improved materials and sophisticated cooling. Cooling is critical to maintaining mechanical integrity of the turbine for temperatures >1000°C. Increasing TET is one of the solutions for improving efficiency after cycle optimum pressure ratios have been achieved but cooling as a percentage of mass flow will have to increase, resulting in cycle efficiency penalties. To limit this effect, it is necessary to know the maximum allowable blade metal temperature to ensure the minimum cooling fraction is used. The main objective of this study is to analyse the thermal efficiencies of four cycles in the 300 – 700 MW class for Generation IV NPPs, using two different turbines with optimum cooling for TETs between 950°C - 1200°C. The cycles analysed are Simple Cycle (SC), Simple Cycle Recuperated (SCR), Intercooled Cycle (IC) and Intercooled Cycle Recuperated (ICR). Although results showed that deterioration of cycle performance is lower when using improved turbine material, the justification to use optimum cooling improves the cycle significantly when a recuperator is used. Furthermore, optimised cooling flow and the introduction of an intercooler improves cycle efficiency by >3%, which is >1% more than previous studies. Finally, the study highlights the potential of cycle performance beyond 1200°C for IC. This is based on the IC showing the least performance deterioration. The analyses intend to aid development of cycles for deployment in Gas Cooled Fast Reactors (GFRs) and Very High Temperature Reactors (VHTRs).
机译:用于核电厂(NPP)的高涡轮机进入温度(TET)涡轮机的潜力需要改进的材料和复杂的冷却。冷却对于保持涡轮机的机械完整性的温度为温度> 1000°C至关重要。随着循环最佳压力比已经实现但是冷却,随着质量流量的百分比,增加效率的液体是提高效率的溶液之一将不得不增加,导致循环效率惩罚。为了限制这种效果,有必要知道最大允许的刀片金属温度,以确保使用最小冷却级分。本研究的主要目的是利用两种不同的涡轮机分析300-700 MW类中的四个循环的热效,该涡轮机在950℃-1200℃之间的最佳冷却。分析的循环是简单的循环(SC),简单的循环恢复(SCR),间电压循环(IC)和中间循环循环(ICR)。虽然结果表明,当使用改进的涡轮机材料时,循环性能的劣化较低,但是在使用恢复器时,使用最佳冷却的原理可以显着改善循环。此外,优化的冷却流量和中间冷却器的引入提高了循环效率> 3%,比以前的研究更高> 1%。最后,该研究突出了超过1200°C的循环性能的潜力。这是基于IC,显示出最低性能恶化。分析打算帮助开发循环,以便在气体冷却的快速反应器(GFRS)和非常高温反应器(VHTRS)中进行展开。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号