首页> 外文OA文献 >Recommendation Systems Based on Association Rule Mining for a Target Object by Evolutionary Algorithms
【2h】

Recommendation Systems Based on Association Rule Mining for a Target Object by Evolutionary Algorithms

机译:基于协会规则挖掘目标对象的推荐系统通过进化算法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Recommender systems are designed for offering products to the potential customers. Collaborative Filtering is known as a common way in Recommender systems which offers recommendations made by similar users in the case of entering time and previous transactions. Low accuracy of suggestions due to a database is one of the main concerns about collaborative filtering recommender systems. In this field, numerous researches have been done using associative rules for recommendation systems to improve accuracy but runtime of rule-based recommendation systems is high and cannot be used in the real world. So, many researchers suggest using evolutionary algorithms for finding relative best rules at runtime very fast. The present study investigated the works done for producing associative rules with higher speed and quality. In the first step Apriori-based algorithm will be introduced which is used for recommendation systems and then the Particle Swarm Optimization algorithm will be described and the issues of these 2 work will be discussed. Studying this research could help to know the issues in this research field and produce suggestions which have higher speed and quality.
机译:推荐系统设计用于为潜在客户提供产品。协作过滤称为推荐系统中的常用方式,该系统提供类似用户在进入时间和以前的事务的情况下提供的建议。由于数据库引起的建议的低准确性是关于协同过滤推荐系统的主要问题之一。在这一领域,使用了许多研究,使用了建议系统的联想规则来提高准确性,但基于规则的推荐系统的运行时间很高,不能在现实世界中使用。因此,许多研究人员建议使用进化算法来在运行时在运行时找到相对最佳规则。本研究调查了为生产较高速度和质量提供联想规则的工作。在第一步中,将引入基于APRiori的算法,其用于推荐系统,然后将描述粒子群优化算法,并且将讨论这两项工作的问题。研究该研究可以帮助了解本研究领域的问题,并产生更高速度和质量的建议。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号