首页> 外文OA文献 >Viscosity–Temperature–Pressure Relationship of Extra-Heavy Oil (Bitumen): Empirical Modelling versus Artificial Neural Network (ANN)
【2h】

Viscosity–Temperature–Pressure Relationship of Extra-Heavy Oil (Bitumen): Empirical Modelling versus Artificial Neural Network (ANN)

机译:超重油(沥青)的粘度 - 温度压力关系:经验模型与人工神经网络(ANN)

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The viscosity data of two heavy oil samples X and Y, with asphaltene contents 24.8% w/w and 18.5% w/w, respectively, were correlated with temperature and pressure using empirical models and the artificial neural network (ANN) approach. The viscosities of the samples were measured over a range of temperatures between 70 °C and 150 °C; and from atmospheric pressure to 7 MPa. It was found that the viscosity of sample X, at 85 °C and atmospheric pressure (0.1 MPa), was 1894 cP and that it increased to 2787 cP at 7 MPa. At 150 °C, the viscosity increased from 28 cP (at 0.1 MPa) to 33 cP at 7 MPa. For sample Y, the viscosity at 70 °C and 0.1 MPa increased from 2260 cP to 3022 cP at 7 MPa. At 120 °C, the viscosity increased from 65 cP (0.1 MPa) to 71 cP at 7 MPa. Notably, using the three-parameter empirical models (Mehrotra and Svrcek, 1986 and 1987), the correlation constants obtained in this study are very close to those that were previously obtained for the Canadian heavy oil samples. Moreover, compared to other empirical models, statistical analysis shows that the ANN model has a better predictive accuracy (R2 ≈ 1) for the viscosity data of the heavy oil samples used in this study.
机译:两条重油样品X和Y的粘度数据,与沥青质含量24.8%w / w的和18.5%w / w的,分别与温度和压力使用经验模型和人工神经网络(ANN)的方法相关。样品的粘度在一定范围的70℃和150℃之间的温度的测量;和从大气压至7MPa。结果发现,样品X的粘度,在85℃和大气压力(0.1MPa)下,是1894厘泊,它在7兆帕增加到2787厘泊。在150℃,粘度为28厘泊(在0.1MPa)在7兆帕增加到33厘泊。对于样品Y,在70℃和0.1MPa下的粘度为2260厘泊,7兆帕增加到3022厘泊。在120℃,粘度为65厘泊(0.1兆帕)在7兆帕增加到71厘泊。值得注意的是,使用三参数经验模型(特拉和Svrcek,1986年和1987年),在这项研究中所获得的相关常数非常接近先前为加拿大重油样本获得的。此外,相对于其他的经验模型,统计分析表明,该人工神经网络模型具有用于在该研究中使用的重油样品的粘度数据的更好的预测精度(R 2≈1)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号