首页> 外文OA文献 >Urban Building Change Detection in SAR Images Using Combined Differential Image and Residual U-Net Network
【2h】

Urban Building Change Detection in SAR Images Using Combined Differential Image and Residual U-Net Network

机译:使用组合差分图像和残差U形网的SAR图像中的城市建筑改变检测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

With the rapid development of urbanization in China, monitoring urban changes is of great significance to city management, urban planning, and cadastral map updating. Spaceborne synthetic aperture radar (SAR) sensors can capture a large area of radar images quickly with fine spatiotemporal resolution and are not affected by weather conditions, making multi-temporal SAR images suitable for change detection. In this paper, a new urban building change detection method based on an improved difference image and residual U-Net network is proposed. In order to overcome the intensity compression problem of the traditional log-ratio method, the spatial distance and intensity similarity are combined to generate a weighting function to obtain a weighted difference image. By fusing the weighted difference image and the bitemporal original images, the three-channel color difference image is generated for building change detection. Due to the complexity of urban environments and the small scale of building changes, the residual U-Net network is used instead of fixed statistical models and the construction and classifier of the network are modified to distinguish between different building changes. Three scenes of Sentinel-1 interferometric wide swath data are used to validate the proposed method. The experimental results and comparative analysis show that our proposed method is effective for urban building change detection and is superior to the original U-Net and SVM method.
机译:随着中国城市化的快速发展,监测城市变化对城市管理,城市规划和地籍地图更新具有重要意义。星源型合成孔径雷达(SAR)传感器可以快速捕获大面积的雷达图像,迅速具有精细的时空分辨率,并且不受天气条件的影响,使得适用于变化检测的多时间SAR图像。本文提出了一种基于改进差异图像和残差U-Net网络的新城市建筑改变检测方法。为了克服传统的记录比方法的强度压缩问题,组合空间距离和强度相似度以产生加权函数以获得加权差异图像。通过融合加权差异图像和衡量标原始图像,产生三声道色差图像以构建变化检测。由于城市环境的复杂性和大规模的建筑变化,使用剩余的U-Net网络代替固定的统计模型,并修改了网络的结构和分类,以区分不同的建筑物变化。 Sentinel-1干涉宽带宽带数据的三个场景用于验证所提出的方法。实验结果和比较分析表明,我们所提出的方法对城市建筑变革检测有效,优于原始U-Net和SVM方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号