首页> 外文OA文献 >An ANN-Based Approach for Prediction of Sufficient Seismic Gap between Adjacent Buildings Prone to Earthquake-Induced Pounding
【2h】

An ANN-Based Approach for Prediction of Sufficient Seismic Gap between Adjacent Buildings Prone to Earthquake-Induced Pounding

机译:基于安基的方法,用于预测相邻建筑物的足够的地震差距,易于发生地震诱导的冲击

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Earthquake-induced structural pounding may cause major damages to structures, and therefore it should be prevented. This study is focused on using an artificial neural network (ANN) method to determine the sufficient seismic gap in order to avoid collisions between two adjacent buildings during seismic excitations. Six lumped mass models of structures with a different number of stories (from one to six) have been considered in the study. The earthquake characteristics and the parameters of buildings have been defined as inputs in the ANN analysis. The required seismic gap preventing pounding has been firstly determined for specified structural arrangements and earthquake records. In order to validate the method for other structural parameters, the study has been further extended for buildings with different values of height, mass, and stiffness of each story. Finally, the parametric analysis has been conducted for various earthquakes scaled to different values of the peak ground acceleration (PGA). The results of the verification and validation analyses indicate that the determined seismic gaps are large enough to prevent structural collisions, and they are just appropriate for all different structural arrangements, seismic excitations, and structural parameters. The results of the parametric analysis show that the increase in the PGA of earthquake records leads to a substantial, nearly uniform, increase in the required seismic gap between structures. The above conclusions clearly indicate that the ANN method can be successfully used to determine the minimal distance between two adjacent buildings preventing their collisions during different seismic excitations.
机译:地震诱导的结构击打可能对结构造成重大损害,因此应该防止。该研究专注于使用人工神经网络(ANN)方法来确定足够的地震间隙,以避免在地震激励期间的两个相邻建筑物之间的碰撞。在该研究中考虑了六种集体群体结构,具有不同数量的故事(从一到六次)。建筑物的地震特性和参数被定义为ANN分析中的输入。已经确定了预防侵入的所需的地震间隙,以确定规定的结构安排和地震记录。为了验证其他结构参数的方法,该研究进一步扩展了每个故事的高度值,质量和刚度值的建筑物。最后,已经对峰值接地加速度(PGA)的不同值进行了各种地震进行了参数分析。验证和验证分析的结果表明,所确定的地震间隙足够大以防止结构碰撞,并且它们仅适用于所有不同的结构布置,地震激励和结构参数。的参数分析结果表明,在地震记录引线的PGA到实质性的,几乎均匀,增加的增加需要结构之间地震空区。上述结论清楚地表明,ANN方法可以成功地用于确定两个相邻建筑物之间的最小距离,防止其在不同地震激发过程中的碰撞。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号