首页> 外文OA文献 >Complexity Estimation of Infrared Image Sequence for Automatic Target Track
【2h】

Complexity Estimation of Infrared Image Sequence for Automatic Target Track

机译:自动目标轨道红外图像序列的复杂性估计

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Infrared image complexity metrics are an important task of automatic target recognition and track performance assessment. Traditional metrics, such as statistical variance and signal-to-noise ratio, targeted to single frame infrared image. However, there are some studies on the complexity of infrared image sequences. For this problem, a method to measure the complexity of infrared image sequence for automatic target recognition and track is proposed. Firstly, based on the analysis of the factors affecting the target recognition and track, the specific reasons which background influences target recognition and track are clarified, and the method introduces the feature space into confusion degree of target and occultation degree of target respectively. Secondly, the feature selection is carried out by using the grey relational method, and the feature space is optimized, so that confusion degree of target and occultation degree of target are more reasonable, and statistical formula F1-Score is used to establish the relationship between the complexity of single-frame image and the two indexes. Finally, the complexity of image sequence is not a linear sum of the single-frame image complexity. Target recognition errors often occur in high-complexity images and the target of low-complexity images can be correctly recognized. So the neural network Sigmoid function is used to intensify the high-complexity weights and weaken the low-complexity weights for constructing the complexity of image sequence. The experimental results show that the present metric is more valid than the other, such as sequence correlation and inter-frame change degree, has a strong correlation with the automatic target track algorithm, and which is an effective complexity evaluation metric for image sequence.
机译:红外图像复杂性度量是自动目标识别和跟踪性能评估的重要任务。传统度量,例如统计方差和信噪比,针对单帧红外图像。然而,有一些关于红外图像序列的复杂性的研究。对于该问题,提出了一种测量自动目标识别和轨道的红外图像序列复杂性的方法。首先,基于分析影响目标识别和轨道的因素,阐明了背景影响目标识别和轨道的具体原因,并且该方法分别将特征空间引入目标和宫殿的混乱程度。其次,通过使用灰色关系方法执行特征选择,并且优化特征空间,使得目标的混淆程度和暗层的目标是更合理的,并且使用统计公式F1分数来建立与之间的关系单帧图像的复杂性和两个索引。最后,图像序列的复杂性不是单帧图像复杂度的线性和。目标识别误差通常在高复杂性图像中发生,并且可以正确地识别低复杂性图像的目标。因此,神经网络S形函数用于加强高复杂性权重,并削弱用于构建图像序列复杂性的低复杂性权重。实验结果表明,目前的度量比其他(例如序列相关和帧间变化程度)更有效,与自动目标轨道算法具有很强的相关性,并且是图像序列的有效复杂性评估度量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号