首页> 外文OA文献 >Deep Learning-Based Super-Resolution Reconstruction and Marker Detection for Drone Landing
【2h】

Deep Learning-Based Super-Resolution Reconstruction and Marker Detection for Drone Landing

机译:基于深度学习的超分辨率重建和无人机着陆的标记检测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

There have been a significant number of recent studies on autonomous landing in unmanned aerial vehicles (UAVs). Early studies employed a global positioning system (GPS) receivers for this purpose. However, because GPS signals cannot be used in certain urban environments, prior studies used vision-based marker detection. To accurately detect a marker, a high-resolution camera on a drone must obtain a high-quality image. This can not only be expensive but also increases the weight of the drone. In general, drones are only equipped with a frontal-viewing and fixed angle camera, and an additional downward-viewing camera becomes necessary for drone landing. Therefore, expensive and weighted high-resolution cameras are not feasible for use on drones. Nevertheless, most previous studies on vision-based drone landing use high-resolution images. To address such limitations, we propose a new method of drone landing using deep learning-based super-resolution reconstruction and marker detection on an image captured by a cost-effective and low-resolution visible light camera. The experimental results on two datasets demonstrate that our method exhibits higher performance than the existing methods in terms of super-resolution reconstruction and marker detection.
机译:在无人驾驶飞行器(无人机)中,有大量有关自主着陆的最新研究。提前研究采用全球定位系统(GPS)接收者为此目的。但是,由于GPS信号不能在某些城市环境中使用,所以研究使用基于视觉的标记检测。为了准确地检测标记,无人机上的高分辨率相机必须获得高质量的图像。这不仅昂贵,而且还增加了无人机的重量。通常,无人机仅配备额景和固定的角度相机,并且无人机降落所需的额外的向上观看相机。因此,昂贵和加权的高分辨率摄像机对于无人机不可行。尽管如此,最先前的基于视觉的无人机着陆的研究使用高分辨率图像。为了解决这些限制,我们提出了一种利用基于深度学习的超分辨率重建和通过经济高分成本和低分辨率的可见光照相机捕获的图像上的标记检测来提出了一种新的无人机降落方法。在两个数据集上的实验结果表明,在超分辨率重建和标记检测方面,我们的方法表现出比现有方法更高的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号