首页> 外文OA文献 >Comparative Analysis of Neural-Network and Fuzzy Auto-Tuning Sliding Mode Controls for Overhead Cranes under Payload and Cable Variations
【2h】

Comparative Analysis of Neural-Network and Fuzzy Auto-Tuning Sliding Mode Controls for Overhead Cranes under Payload and Cable Variations

机译:有效载荷和电缆变化下顶部起重机的神经网络和模糊自动调谐滑模控制的比较分析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The overhead crane is required to operate fast and precisely with minimal sway. However, high-speed operations cause undesirable load sways, hazardous to operating personnel, the payload being handled, and the crane itself. Thus, a high-quality control is required. In this work, the nonlinear model of the overhead crane was established and the sliding mode control (SMC) was proposed that ensured the existence of sliding motion in the presence of payload and hoisting height variations, and viscous frictions. To maximize the benefits derived from the proposed control method, novel sliding slope-update based on intelligent neural-network and fuzzy algorithms were developed to tune the controller, guaranteeing precise tracking of the actuated variables as well as regulation of the unactuated variables. The proposed methods adjust predetermined value of the sliding manifold’s slope in response to variations in hoisting heights. Control applications were conducted, and results based on graphical, integral absolute error (IAE), and integral time absolute error (ITAE) proved the effectiveness of the proposed algorithms. It was observed that the response of the controller with back-propagation-trained neural-network was more effective relative to that of the fuzzy algorithm.
机译:该桥式起重机是需要以最小摇摆快速,准确地进行操作。但是,高速的业务造成不良装载摇摆,危害操作人员,有效载荷被处理,以及起重机本身。因此,需要一种高品质的控制。在这项工作中,桥式起重机的非线性模型的建立,滑动模式控制(SMC)中提出,在确保有效载荷的存在滑动运动和提升高度的变化的存在,和粘性摩擦。为了最大限度地提高从提出的控制方法所产生的利益,基于智能神经网络和模糊算法上新颖滑动斜率更新被开发来调谐控制器,保证了致动变量的精确的跟踪以及非致动变量的调节。所提出的方法调整响应于提升高度变化预定的滑动歧管的斜率的值。控制应用进行的,和基于图形,积分绝对误差(IAE)的结果,和积分时间绝对误差(ITAE)证明所提出的算法的有效性。据观察,与反向传播训练神经网络控制器的反应是更有效的相对于模糊的算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号