首页> 外文OA文献 >A Multi-Agent Based Intelligent Training System for Unmanned Surface Vehicles
【2h】

A Multi-Agent Based Intelligent Training System for Unmanned Surface Vehicles

机译:一种基于多功能基于智能训练系统,用于无人面车辆

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The modeling and design of multi-agent systems is imperative for applications in the evolving intelligence of unmanned systems. In this paper, we propose a multi-agent system design that is used to build a system for training a team of unmanned surface vehicles (USVs) where no historical data concerning the behavior is available. In this approach, agents are built as the physical controller of each USV and their cooperative decisions used for the USVs’ group coordination. To make our multi-agent system intelligently coordinate USVs, we built a multi-agent-based learning system. First, an agent-based data collection platform is deployed to gather competition data from agents’ observation for on-line learning tasks. Second, we design a genetic-based fuzzy rule training algorithm that is capable of optimizing agents’ coordination decisions in an accumulated manner. The simulation results of this study demonstrate that our proposed training approach is feasible and able to converge to a stable action selection policy towards efficient multi-USVs’ cooperative decision making.
机译:多种Agent系统的建模与设计对于无人驾驶系统的不断发展智能的应用是必需的。在本文中,我们提出了一种多功能系统设计,用于构建一个培训一个无人面车辆(USV)的系统的系统,在那里没有有关该行为的历史数据。在这种方法中,代理商被构建为每个USV的物理控制器及其用于USVS群体协调的合作决策。为了使我们的多智能体系智能地坐标USV,我们构建了一种基于代理的学习系统。首先,部署基于代理的数据收集平台,以从代理人的观察中收集竞争数据,以便在线学习任务。其次,我们设计了一种基于遗传的模糊规则训练算法,其能够以累积的方式优化代理的协调决策。本研究的仿真结果表明,我们建议的培训方法是可行的,能够融合到有效的多USVS合作决策的稳定行动选择政策。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号