首页> 外文OA文献 >A Novel Saliency Detection Method for Wild Animal Monitoring Images with WMSN
【2h】

A Novel Saliency Detection Method for Wild Animal Monitoring Images with WMSN

机译:用WMSN野生动物监测图像的一种新型显着性检测方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We proposed a novel saliency detection method based on histogram contrast algorithm and images captured with WMSN (wireless multimedia sensor network) for practical wild animal monitoring purpose. Current studies on wild animal monitoring mainly focus on analyzing images with high resolution, complex background, and nonuniform illumination features. Most current visual saliency detection methods are not capable of completing the processing work. In this algorithm, we firstly smoothed the image texture and reduced the noise with the help of structure extraction method based on image total variation. After that, the saliency target edge information was obtained by Canny operator edge detection method, which will be further improved by position saliency map according to the Hanning window. In order to verify the efficiency of the proposed algorithm, field-captured wild animal images were tested by using our algorithm in terms of visual effect and detection efficiency. Compared with histogram contrast algorithm, the result shows that the rate of average precision, recall and F-measure improved by 18.38%, 19.53%, 19.06%, respectively, when processing the captured animal images.
机译:我们提出了一种基于直方图对比度算法的新型显着性检测方法,并用WMSN(无线多媒体传感器网络)捕获的图像进行实际野生动物监测目的。目前关于野生动物监测的研究主要专注于分析高分辨率,复杂背景和非均匀照明特征的图像。大多数当前的视力视力检测方法无法完成处理工作。在该算法中,我们首先将图像纹理平滑并在基于图像总变化的结构提取方法的帮助下降低了噪声。之后,通过Canny操作员边缘检测方法获得显着目标边缘信息,该方法通过根据Hanning窗口的定位显着图进一步改善。为了验证所提出的算法的效率,通过在视觉效果和检测效率方面使用我们的算法来测试现场捕获的野生动物图像。与直方图对比算法相比,结果表明,在处理捕获的动物图像时,平均精度,召回和F测量的速率分别提高18.38%,19.53%,19.06%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号