首页> 外文OA文献 >Multitask Learning with Deep Neural Networks for Community Question Answering
【2h】

Multitask Learning with Deep Neural Networks for Community Question Answering

机译:与社区问题的深度神经网络的多任务学习

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper, we developed a deep neural network (DNN) that learns to solvesimultaneously the three tasks of the cQA challenge proposed by theSemEval-2016 Task 3, i.e., question-comment similarity, question-questionsimilarity and new question-comment similarity. The latter is the main task,which can exploit the previous two for achieving better results. Our DNN istrained jointly on all the three cQA tasks and learns to encode questions andcomments into a single vector representation shared across the multiple tasks.The results on the official challenge test set show that our approach produceshigher accuracy and faster convergence rates than the individual neuralnetworks. Additionally, our method, which does not use any manual featureengineering, approaches the state of the art established with methods that makeheavy use of it.
机译:在本文中,我们开发了一个深度神经网络(DNN),学习才能解决CQA-2016-2016任务3提出的CQA挑战的三个任务,即质疑评论相似性,质疑问题和新的问题评论相似性。后者是主要任务,可以利用前两个实现更好的结果。我们的DNN在所有三个CQA任务中共同努力,并学习将问题编码为在多个任务中共享的单个向量表示。官方挑战测试集的结果表明我们的方法生产精度和更快的收敛率而不是各个神经网络。此外,我们的方法不使用任何手动FeaturingEngineering,并采用明显使用它的方法建立的艺术状态。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号