首页> 外文OA文献 >Improving Recommendation Accuracy Using Social Network of Owners in Social Internet of Vehicles
【2h】

Improving Recommendation Accuracy Using Social Network of Owners in Social Internet of Vehicles

机译:在社交车辆中使用业主的社交网络提高建议准确性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The latest manifestation of “all connected world" is the Internet of Things (IoT), and Internet of Vehicles (IoV) is one of the key examples of IoT these days. In Social IoV (SIoV), each vehicle is treated as a social object where it establishes and manages its own Social Network (SN). Incidentally, most of the SIoV research in the literature is related to proximity-based connectivity and interactions. In this paper, we bring people in the loop by incorporating their SNs. While emphasizing a recommendation scenario, in which vehicles may require recommendations from SNs of their owners (in addition to their own SIoV), we proposed an agent-based model of information sharing (for context-based recommendations) on a hypothetical population of smart vehicles. Some important hypotheses were tested using a realistic simulation setting. The simulation results reveal that a recommendation using weak ties is more valuable than a recommendation using strong ties in pure SIoV. The simulation results also demonstrate that recommendations using the most-connected person in the social network are not more valuable than recommendation using a random person in the social network. The model presented in this paper can be used to design a multi-scale recommendation system, which uses SIoV and a typical SN in combination.
机译:“所有连接世界”的最新表现形式是事物(物联网),车辆互联网(IOV)是这些天的IOT的关键例子之一。在社交IOV(Siov)中,每个车辆都被视为社会它在其中建立和管理自己的社交网络(SN)的对象。顺便提一下,文献中的大多数Siov研究与基于近距离的连接和相互作用有关。在本文中,我们通过纳入他们的SNS来带来循环中的人们。而强调推荐方案,其中车辆可能需要来自其所有者的SNS的建议(除了自己的SIOV),我们提出了一个基于代理的信息共享模型(基于上下文的建议),在假设车辆的假设群体上。使用逼真的模拟设置测试了一些重要的假设。模拟结果表明,使用弱领带的建议比使用纯Siov中强有力的建议更有价值。模拟resu LTS还展示了使用社交网络中最关联的人的建议而不是在社交网络中使用随机人的推荐更有价值。本文提出的模型可用于设计多尺度推荐系统,该系统使用Siov和典型的Sn组合。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号