首页> 外文OA文献 >A Lifelogging Platform Towards Detecting Negative Emotions in Everyday Life using Wearable Devices
【2h】

A Lifelogging Platform Towards Detecting Negative Emotions in Everyday Life using Wearable Devices

机译:使用可穿戴设备来检测日常生活中的负面情绪的生命记录平台

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Repeated experiences of negative emotions, such as stress, anger or anxiety, can have long-term consequences for health. These episodes of negative emotion can be associated with inflammatory changes in the body, which are clinically relevant for the development of disease in the long-term. However, the development of effective coping strategies can mediate this causal chain. The proliferation of ubiquitous and unobtrusive sensor technology supports an increased awareness of those physiological states associated with negative emotion and supports the development of effective coping strategies. Smartphone and wearable devices utilise multiple on-board sensors that are capable of capturing daily behaviours in a permanent and comprehensive manner, which can be used as the basis for self-reflection and insight. However, there are a number of inherent challenges in this application, including unobtrusive monitoring, data processing, and analysis. This paper posits a mobile lifelogging platform that utilises wearable technology to monitor and classify levels of stress. A pilot study has been undertaken with six participants, who completed up to ten days of data collection. During this time, they wore a wearable device on the wrist during waking hours to collect instances of heart rate (HR) and Galvanic Skin Resistance (GSR). Preliminary data analysis was undertaken using three supervised machine learning algorithms: Linear Discriminant Analysis (LDA), Quadratic Discriminant Analysis (QDA) and Decision Tree (DT). An accuracy of 70% was achieved using the Decision Tree algorithm.
机译:反复对负面情绪的经历,如压力,愤怒或焦虑,可以对健康产生长期后果。这些阴性情绪的剧集可以与身体的炎症变化有关,这些变化在临床上与长期发育疾病。然而,有效应对策略的发展可以调解这种因果链。无处不在和不引人注目的传感器技术的增殖支持对与负面情绪相关的生理国家的意识增加,并支持有效应对策略的发展。智能手机和可穿戴设备利用多个板载传感器,能够以永久和综合方式捕获日常行为,可作为自我反思和洞察力的基础。然而,本申请中存在许多固有挑战,包括不引人注目的监控,数据处理和分析。本文定位了一个移动的LifeLogging平台,利用可穿戴技术监测和分类压力水平。有六名参与者进行了试点研究,他们完成了最多十天的数据收集。在此期间,在醒出时数时,它们穿着手腕上的可穿戴装置,以收集心率(HR)和电流性抗性(GSR)的情况。使用三种监督机器学习算法进行初步数据分析:线性判别分析(LDA),二次判别分析(QDA)和决策树(DT)。使用决策树算法实现了70%的精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号