首页> 外文OA文献 >DeepRes: a new deep-learning- and aspect-based local resolution method for electron-microscopy maps
【2h】

DeepRes: a new deep-learning- and aspect-based local resolution method for electron-microscopy maps

机译:Deepres:一种新的基于深度学习和基于宽高的局部分辨率方法,用于电子显微镜图

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this article, a method is presented to estimate a new local quality measure for 3D cryoEM maps that adopts the form of a `local resolution' type of information. The algorithm (DeepRes) is based on deep-learning 3D feature detection. DeepRes is fully automatic and parameter-free, and avoids the issues of most current methods, such as their insensitivity to enhancements owing to B-factor sharpening (unless the 3D mask is changed), among others, which is an issue that has been virtually neglected in the cryoEM field until now. In this way, DeepRes can be applied to any map, detecting subtle changes in local quality after applying enhancement processes such as isotropic filters or substantially more complex procedures, such as model-based local sharpening, non-model-based methods or denoising, that may be very difficult to follow using current methods. It performs as a human observer expects. The comparison with traditional local resolution indicators is also addressed.
机译:在本文中,提出了一种方法来估计采用“本地分辨率”类型的形式的3D CryoEM地图的新局部质量度量。该算法(DEEPRES)基于深度学习的3D特征检测。 Deepres是完全自动和无参数的,避免了最新方法的问题,例如由于B因子锐化(除非3D掩码发生)而不是改变的增强功能,其中包括几乎一般的问题直到现在,在Cryoem领域忽略了。以这种方式,Deepres可以应用于任何地图,在应用增强过程(例如各向同性过滤器或基于模型的本地锐化,非模型的方法或去噪)之后,检测局部质量的微妙变化可能非常难以使用当前方法遵循。它表现为人类观察者的期望。还解决了与传统本地解决方案指标的比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号