首页> 外文OA文献 >Modeling and Implementing Two-Stage AdaBoost for Real-Time Vehicle License Plate Detection
【2h】

Modeling and Implementing Two-Stage AdaBoost for Real-Time Vehicle License Plate Detection

机译:用于实时车辆车牌检测的模拟与实现两阶段Adaboost

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

License plate (LP) detection is the most imperative part of the automatic LP recognition system. In previous years, different methods, techniques, and algorithms have been developed for LP detection (LPD) systems. This paper proposes to automatical detection of car LPs via image processing techniques based on classifier or machine learning algorithms. In this paper, we propose a real-time and robust method for LPD systems using the two-stage adaptive boosting (AdaBoost) algorithm combined with different image preprocessing techniques. Haar-like features are used to compute and select features from LP images. The AdaBoost algorithm is used to classify parts of an image within a search window by a trained strong classifier as either LP or non-LP. Adaptive thresholding is used for the image preprocessing method applied to those images that are of insufficient quality for LPD. This method is of a faster speed and higher accuracy than most of the existing methods used in LPD. Experimental results demonstrate that the average LPD rate is 98.38% and the computational time is approximately 49 ms.
机译:牌照(LP)检测是自动LP识别系统中最势不一的一部分。在过去几年中,已经为LP检测(LPD)系统开发了不同的方法,技术和算法。本文提出了基于分类器或机器学习算法的图像处理技术自动检测汽车LPS。在本文中,我们使用两阶段自适应升压(Adaboost)算法结合不同图像预处理技术,为LPD系统提出了一种实时和鲁棒方法。哈尔样功能用于计算和选择LP图像的功能。 adaboost算法用于将训练的强分类器作为LP或非LP对搜索窗口内的图像的部分分类。自适应阈值用于应用于LPD质量不足的那些图像的图像预处理方法。该方法的速度更快,精度高于LPD中使用的大部分现有方法。实验结果表明,平均LPD速率为98.38%,计算时间约为49毫秒。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号