首页> 外文OA文献 >AUTOMATIC CO-REGISTRATION OF AERIAL IMAGERY AND UNTEXTURED MODEL DATA UTILIZING AVERAGE SHADING GRADIENTS
【2h】

AUTOMATIC CO-REGISTRATION OF AERIAL IMAGERY AND UNTEXTURED MODEL DATA UTILIZING AVERAGE SHADING GRADIENTS

机译:自动共同登记空中图像和利用平均着色梯度的未致纹化模型数据

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The comparison of current image data with existing 3D model data of a scene provides an efficient method to keep models up to date. In order to transfer information between 2D and 3D data, a preliminary co-registration is necessary. In this paper, we present a concept to automatically co-register aerial imagery and untextured 3D model data. To refine a given initial camera pose, our algorithm computes dense correspondence fields using SIFT flow between gradient representations of the model and camera image, from which 2D–3D correspondences are obtained. These correspondences are then used in an iterative optimization scheme to refine the initial camera pose by minimizing the reprojection error. Since it is assumed that the model does not contain texture information, our algorithm is built up on an existing method based on Average Shading Gradients (ASG) to generate gradient images based on raw geometry information only. We apply our algorithm for the co-registering of aerial photographs to an untextured, noisy mesh model. We have investigated different magnitudes of input error and show that the proposed approach can reduce the final reprojection error to a minimum of 1.27 ± 0.54 pixels, which is less than 10% of its initial value. Furthermore, our evaluation shows that our approach outperforms the accuracy of a standard Iterative Closest Point (ICP) implementation.
机译:当前图像数据与场景的现有3D模型数据的比较提供了一种有效的方法,以保持模型最新。为了在2D和3D数据之间传输信息,需要初步共同注册。在本文中,我们提出了一种自动共同注册空中图像和未致致致密的3D模型数据的概念。为了优化给定的初始摄像机姿势,我们的算法使用模型和摄像机图像的梯度表示之间的SIFT流来计算密集的对应字段,从中获得2D-3D对应关系。然后在迭代优化方案中使用这些对应条件来通过最小化重注错误来改进初始相机姿势。由于假设该模型不包含纹理信息,因此我们的算法基于平均阴影梯度(ASG)以基于原始几何信息生成梯度图像的现有方法构建。我们将算法应用于共登记航空照片到一个不受致致宽大的嘈杂的网模型。我们研究了不同的输入误差大小,并表明所提出的方法可以将最终的再注射误差降至最低的1.27±0.54像素,其占初始值的10%。此外,我们的评估表明,我们的方法优于标准迭代最近点(ICP)实施的准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号