首页> 外文OA文献 >Optimizing flood mapping using multi-synthetic aperture radar images for regions of the lower mekong basin in Vietnam
【2h】

Optimizing flood mapping using multi-synthetic aperture radar images for regions of the lower mekong basin in Vietnam

机译:优化使用多合成孔径雷达图像进行越南下湄公河地区区域的洪水映射

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

One major characteristic of floods is flood extent. Information on this characteristic is indispensable for flood monitoring. Recently, synthetic aperture radar (SAR) data have been increasing in quality and quantity. This allows more flood studies conducted over large areas regardless of cloud and weather conditions and provides advantages including clear surface water classification based on SAR scattering mechanisms for low values (open water) and high values (inundated vegetation, etc.). However, challenges remain due to sources of uncertainties, such as atmospheric disturbances and vegetation masking parts of water surfaces. Therefore, in this study, we aim to optimize flood mapping processes on flooded vegetation that generated high-value pixels based on a SAR scattering mechanism called double bounce that classifies vegetative flooded water in L-band SAR images. This optimization is nearly impossible using Sentinel-1 scenes. Backscattering of time-series Sentinel-1 and ALOS-2 images acquired for the 2018 and 2019 flood season was analysed, thresholded and hybridized for flood mapping of a study site in the Tam Nong district of the Dong Thap Province of Vietnam. We found that the accuracy of SAR flood maps was improved compared to ground truth data when the SAR-extracted vegetative-flooded plains were considered flooded.
机译:洪水的一个主要特点是泛滥的程度。这一特性的信息是洪水监测不可缺少的。最近,合成孔径雷达(SAR)的数据已被在质量和数量不断增加。这使得大面积的云无关和天气条件下进行更多的洪水研究和提供优势,包括基于SAR散射的低值(开放水域)和高值(淹没的植被等)机制明确地表水分类。然而,挑战仍然存在由于不确定性,如大气扰动和水表面植被的遮覆部分的来源。因此,在本研究中,我们的目标是优化洪水映射进程上淹没植被根据SAR散射机制产生高值的像素被称为双反弹进行分类营养在L波段SAR图像淹水。这种优化使用Sentinel-1的场景几乎是不可能的。的时间序列的Sentinel-1和2018年至2019年汛期收购ALOS-2图像后向散射进行了分析,阈值处理和杂交研究网站在越南同塔省的谭农区的洪水映射。我们发现,SAR洪水地图的精度相比地面实况数据时,特区提取营养充足的平原被认为是被淹的提高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号